Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 Aug 2014, 01:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x#0 and x/|x|<x, which of the following must be true?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 556 [0], given: 135

Premium Member
Re: GMAT quant DS question from GMAT club tests [#permalink] New post 01 May 2013, 21:37
Expert's post
doe007 wrote:
vinaymimani wrote:
The question at NO point of time has asked "to find the rage in which all values of x would satisfy the inequality x / |x| < x", It just says which of the following MUST be TRUE. You don't assume that the given options encompass all the valid ranges. You find the valid ranges, then look for a common thread which binds them together and MUST BE TRUE, irrespective of the range(s).

When the question is on is MUST BE TRUE, all value in the range MUST satisfy the inequality.


I don't think so. If x>1, then which of the following must be true?

A.x=3
B.x is not equal to 2
C.x>2
D.x>9
E.x>-1

What will be your answer to the above question? BTW it is a question I just made now, so no Source.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 556 [0], given: 135

Premium Member
Re: GMAT quant DS question from GMAT club tests [#permalink] New post 01 May 2013, 22:41
Expert's post
doe007 wrote:
vinaymimani wrote:
I don't think so. If x>1, then which of the following must be true?

A.x=3
B.x is not equal to 2
C.x>2
D.x>9
E.x>-1

What will be your answer to the above question?


Here you gave an example which has only one correct answer, that is option E. For all other options, we cannot prove the question from the given information.

But, in the original question, for the ranges shown in A and E, we cannot say that there is a value for which the inequality will not hold true. Thus, option A and option E are "MUST BE TRUE" conditions. There is no logic to say that there is a possibility for those ranges not satisfying the condition.

So this example is not analogous to the question in consideration.


if-x-3-1-which-of-the-following-must-be-true-41133.html#p1193086
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 556 [0], given: 135

Premium Member
Re: GMAT quant DS question from GMAT club tests [#permalink] New post 01 May 2013, 23:43
Expert's post
doe007 wrote:
vinaymimani wrote:

What's the point here? Clearly that question has one and only one correct answer and there is no ambiguity or controversy in the OA of that question.

No question from GMAC will have more than one correct answer. From that point itself, the question of this topic has noncompliance.

By extending the same logic for agreeing with x > -1, I can as well say x > -5 which will MUST BE TRUE for all values satisfying the inequality in the question (all x's satisfying the given inequality MUST BE satisfying the condition x > -5). But, that cannot be the objective of any question.


I gave that question to demonstrate that a question can have both the correct options, which subscribe to the valid ranges and still not be the correct MUST-be-true answer. The question is ONLY asking which condition is MUST be true for x. BY no means, assume this condition to be a solution for the inequality. All it is asking is for the given inequality, which attribute of the variable x, MUST be TRUE. Also, the very reason that we are having this conversation/debate is the objective of the question.

I think carrying this conversation further will not do any more value addition. Ergo, I won't be posting anymore on this topic. We can both agree to disagree.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Senior Manager
Senior Manager
avatar
Joined: 16 Dec 2011
Posts: 453
Followers: 9

Kudos [?]: 141 [0], given: 70

Re: GMAT quant DS question from GMAT club tests [#permalink] New post 02 May 2013, 00:03
I have deleted my earlier posts as there is point to agree with the OA -- ALL the values satisfying the given inequality also satisfies the range in option B. All other options are wrong as there are some x's which will satisfy x / |x| < x but will not be in that range. Examples are:
A) x>1 is not true for x = -0.5
C) |x|<1 is not true for x = 2
D) |x|>1 is not true for x = -0.5
E) −1<x<0 is not true for x = 2
I admit that I read the question in incorrect way and from that I went to a different direction.
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 48 [0], given: 134

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 13 Jun 2013, 13:31
Can you tell me what I am doing wrong here?

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?

Thanks!


Bunuel wrote:
Marcab wrote:
If x\neq{0} and \frac{x}{|x|}<x, which of the following must be true?

(A) x>1

(B) x>-1

(C) |x|<1

(D) |x|>1

(E) -1<x<0

Explanations required for this one.
Not convinced at all with the OA.

My range is -1<x<0 and x>1.


Notice that we are asked to find which of the options MUST be true, not COULD be true.

Let's see what ranges does \frac{x}{|x|}< x give for x. Two cases:

If x<0 then |x|=-x, hence in this case we would have: \frac{x}{-x}<x --> -1<x. But remember that we consider the range x<0, so -1<x<0;

If x>0 then |x|=x, hence in this case we would have: \frac{x}{x}<x --> 1<x.

So, \frac{x}{|x|}< x means that -1<x<0 or x>1.

Only option which is ALWAYS true is B. ANY x from the range -1<x<0 or x>1 will definitely be more the -1.

Answer: B.

As for other options:

A. x>1. Not necessarily true since x could be -0.5;
C. |x|<1 --> -1<x<1. Not necessarily true since x could be 2;
D. |x|>1 --> x<-1 or x>1. Not necessarily true since x could be -0.5;
E. -1<x<0. Not necessarily true since x could be 2.

P.S. Please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Please pay attention to the rules #3 and 6. Thank you.

Last edited by WholeLottaLove on 13 Jun 2013, 13:36, edited 1 time in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22141
Followers: 3407

Kudos [?]: 24895 [0], given: 2697

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 13 Jun 2013, 13:35
Expert's post
WholeLottaLove wrote:
Can you tell me what I am doing wrong here?

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

0<x<1

So why aren't the values considered: -1<x<1?

Thanks!


Bunuel wrote:
Marcab wrote:
If x\neq{0} and \frac{x}{|x|}<x, which of the following must be true?

(A) x>1

(B) x>-1

(C) |x|<1

(D) |x|>1

(E) -1<x<0

Explanations required for this one.
Not convinced at all with the OA.

My range is -1<x<0 and x>1.


Notice that we are asked to find which of the options MUST be true, not COULD be true.

Let's see what ranges does \frac{x}{|x|}< x give for x. Two cases:

If x<0 then |x|=-x, hence in this case we would have: \frac{x}{-x}<x --> -1<x. But remember that we consider the range x<0, so -1<x<0;

If x>0 then |x|=x, hence in this case we would have: \frac{x}{x}<x --> 1<x.

So, \frac{x}{|x|}< x means that -1<x<0 or x>1.

Only option which is ALWAYS true is B. ANY x from the range -1<x<0 or x>1 will definitely be more the -1.

Answer: B.

As for other options:

A. x>1. Not necessarily true since x could be -0.5;
C. |x|<1 --> -1<x<1. Not necessarily true since x could be 2;
D. |x|>1 --> x<-1 or x>1. Not necessarily true since x could be -0.5;
E. -1<x<0. Not necessarily true since x could be 2.

P.S. Please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Please pay attention to the rules #3 and 6. Thank you.


For x>0 you get x>1 --> x>1 not 0<x<1.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 48 [0], given: 134

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 13 Jun 2013, 13:37
Hi - I just fixed the question.

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?
Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 556 [0], given: 135

Premium Member
Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 14 Jun 2013, 01:47
Expert's post
WholeLottaLove wrote:
Hi - I just fixed the question.

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?


The two ranges which you have got are absolutely correct :

-1<x<0 OR 1<x

Now, which trait for any value of x, which subscribes to either of the range is ALWAYS true?

That's x>-1. Having said that, it is NOT necessary that any value of x>-1 MUST satisfy the given inequality.

However,any value of x satisfying the given inequality WILL be greater than -1.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4847 [0], given: 163

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 14 Jun 2013, 03:34
Expert's post
WholeLottaLove wrote:
Hi - I just fixed the question.

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?


Check out this link which discusses this question and this issue in detail:

http://www.veritasprep.com/blog/2012/07 ... -and-sets/
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 48 [0], given: 134

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 14 Jun 2013, 06:31
Thank you for that link. Unfortunately I am still a bit lost.

When we take the negative case (x<0) we have -1<x therefore we join x<0 and -1<x thus: -1<x<0

When we take the positive case (x>0) we have 1<x I would assume we join the two cases thus: x>0, x>1

In your link you made reference to the AND/OR concepts and I am vaguely familiar with them but I am still a bit confused as to why we count the range of the negative cases (which makes sense because we are given that x falls within -1 and 0) but we don't count any # between zero and one but we do count numbers greater than one (is it because only values that fall within both x>0 and X>1 count? And if so, why?)

Thanks!

VeritasPrepKarishma wrote:
WholeLottaLove wrote:
Hi - I just fixed the question.

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?


Check out this link which discusses this question and this issue in detail:

http://www.veritasprep.com/blog/2012/07 ... -and-sets/
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4847 [0], given: 163

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 14 Jun 2013, 07:32
Expert's post
WholeLottaLove wrote:
Thank you for that link. Unfortunately I am still a bit lost.

When we take the negative case (x<0) we have -1<x therefore we join x<0 and -1<x thus: -1<x<0

When we take the positive case (x>0) we have 1<x I would assume we join the two cases thus: x>0, x>1

In your link you made reference to the AND/OR concepts and I am vaguely familiar with them but I am still a bit confused as to why we count the range of the negative cases (which makes sense because we are given that x falls within -1 and 0) but we don't count any # between zero and one but we do count numbers greater than one (is it because only values that fall within both x>0 and X>1 count? And if so, why?)

Thanks!

VeritasPrepKarishma wrote:
WholeLottaLove wrote:
Hi - I just fixed the question.

There are two cases for x/|x|<x

Negative: x/-x<x -1<x
x is negative when x<0, so:

-1<x<0

Positive: x/x<x 1<x
x is positive when x>0, so:

x>0, x>1

So why aren't the values considered: -1<x<1? Why do we not consider the values of x>0?


Check out this link which discusses this question and this issue in detail:

http://www.veritasprep.com/blog/2012/07 ... -and-sets/



In simple terms, this is what the concept is all about:

You have 5 numbers in your list: 1, 4, 7, 8, 11

Which of the following is true for all the numbers in your list?
(A) Every number > 0
(B) Every number > 2
(C) Every number > 13

I hope you agree that answer is (A)

Every number is greater than 0. Do you have a problem that 2 is not a part of the numbers you have so how can (A) be the answer? Every number greater than 0 needn't be in your list. The question was what is true for all the numbers in the list.

This is the same concept.

You got the following ranges for x: -1 < x < 0, x > 1

Which of the following must be true?
x > 1
x > -1

Do you see that for all values of x that you got, x must be greater than -1?
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 48 [0], given: 134

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 01 Jul 2013, 12:55
If x doesn't equal 0 and (x)/|x|<x, which of the following must be true?

(I made the mistake of assuming that all values of x would make the statement true [i.e. what is the value of (x)/|x|<x] as opposed to looking what values of x are possible given the constraint of (x)/|x|<x)

So: (x)/|x|<x

x/x<x 1<x
OR
x/-x<x -1<x

(A) x>1 x is greater than 1. This lies entirely outside of the desired range. INVALID

(B) x>-1 As long as x>-1 it will fall within EITHER desired range of x>-1 or x>1 VALID

(C) |x|<1 x<1 OR x<-1 X may fall in the range (less than one) but it may also fall out of it (x<-1). INVALID

(D) |x|>1 x>1 OR x<-1 Both values of x fall entirely out of the desired range. INVALID

(E) -1<x<0

I'm still a little unsure as to why (E) isn't valid...I think it's because (E) states that x MUST be between -1 and 0 when in fact x simply has to be greater than -1.

Is that correct?
Manager
Manager
avatar
Joined: 03 Mar 2013
Posts: 91
Location: India
Concentration: General Management, Marketing
GPA: 3.49
WE: Web Development (Computer Software)
Followers: 0

Kudos [?]: 7 [0], given: 6

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 02 Jul 2013, 09:20
Marcab wrote:
If x\neq{0} and \frac{x}{|x|}<x, which of the following must be true?

(A) x>1

(B) x>-1

(C) |x|<1

(D) |x|>1

(E) -1<x<0

m09 q22

Explanations required for this one.
Not convinced at all with the OA.

My range is -1<x<0 and x>1.



can you please, explain me what does the must be true clause mean in this question ??

0.1 to 0.9999999999 none satisfy this relation and more over they are greater than -1
and when again we have an option called > 1,
why do we choose this to be wrng ?
do we have any value > 1 but still don't satisfy this question ??



please explain, i did understand from -1 to 0 there are values which accept this relation but accpeting this doesn't mean we can omit from 0 to -9 ...


Im confused, im out of nuts . please help me for this :) :)
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22141
Followers: 3407

Kudos [?]: 24895 [1] , given: 2697

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 02 Jul 2013, 09:47
1
This post received
KUDOS
Expert's post
krrish wrote:
Marcab wrote:
If x\neq{0} and \frac{x}{|x|}<x, which of the following must be true?

(A) x>1

(B) x>-1

(C) |x|<1

(D) |x|>1

(E) -1<x<0

m09 q22

Explanations required for this one.
Not convinced at all with the OA.

My range is -1<x<0 and x>1.



can you please, explain me what does the must be true clause mean in this question ??

0.1 to 0.9999999999 none satisfy this relation and more over they are greater than -1
and when again we have an option called > 1,
why do we choose this to be wrng ?
do we have any value > 1 but still don't satisfy this question ??

please explain, i did understand from -1 to 0 there are values which accept this relation but accpeting this doesn't mean we can omit from 0 to -9 ...


Im confused, im out of nuts . please help me for this :) :)


Question: if -1<x<0 or x>1, then which of the following must be true? Notice that -1<x<0 or x>1 is given to be true: x is either from {-1, 0} or from {1, +infinity}

Only option which is ALWAYS true is B. ANY x from the range -1<x<0 or x>1 will definitely be more the -1. (Complete solution is here: if-x-0-and-x-x-x-which-of-the-following-must-be-true-143572.html#p1150594)

The following posts might help:
if-x-0-and-x-x-x-which-of-the-following-must-be-true-143572.html#p1150609
if-x-0-and-x-x-x-which-of-the-following-must-be-true-143572.html#p1181573

All Must or Could be True Questions to practice: search.php?search_id=tag&tag_id=193

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 28 Jul 2013
Posts: 56
Location: India
Concentration: Marketing, Strategy
GPA: 3.62
WE: Engineering (Manufacturing)
Followers: 0

Kudos [?]: 8 [0], given: 20

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 03 Nov 2013, 08:01
I did it this way....is it a correct way?
x/|x|<x

(x/|x|)-x<0

x((1/|x|)-1)<0

|x| has to be positive; x can take decimal value (between 0 and 1 zero not included) or whole value.

in that case (1/|x|)-1 can be more than zero and less than zero so accordingly x will be negative or positive as (+)x(-) = less than zero

if 0<|x|<1 then (1/|x|)-1 is positive and to make x((1/|x|)-1)<0, x has to be negative

if x>1 then (1/|x|)-1 is negative and to make x((1/|x|)-1)<0, x has to be positive

Hence, x>-1
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4847 [0], given: 163

Re: If x#0 and x/|x|<x, which of the following must be true? [#permalink] New post 06 Nov 2013, 20:20
Expert's post
sayansarkar wrote:
I did it this way....is it a correct way?
x/|x|<x

(x/|x|)-x<0

x((1/|x|)-1)<0



I think it is though it is a little hard to understand. Let me try to write it clearly:

x((1/|x|)-1)<0

Two cases:

Case 1: x < 0 AND (1/|x|-1) > 0
From (1/|x|-1) > 0 we get that |x| < 1 i.e. -1 < x < 1
So combining, we get -1 < x < 0

Case 2: x > 0 AND (1/|x|-1) < 0
From (1/|x|-1) < 0 we get that |x| > 1 i.e. x > 1 or x < -1
So combining, we get x > 1

x could lie between -1 and 0 or it could be more than 1. Hence in any case, it will be more than -1.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Re: If x#0 and x/|x|<x, which of the following must be true?   [#permalink] 06 Nov 2013, 20:20
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic If |x|=−x, which of the following must be true? Mountain14 2 22 Mar 2014, 01:31
16 Experts publish their posts in the topic If 4<(7-x)/3, which of the following must be true? mn2010 15 12 Aug 2010, 14:05
1 Experts publish their posts in the topic If x/|x|, which of the following must be true for all praveenvino 2 15 Jan 2011, 11:44
2 Experts publish their posts in the topic If x/|x| < x, which of the following must be true about tkarthi4u 24 06 Sep 2009, 21:14
Given X/|X| < X. Which of the following must be true shoonya 17 06 Aug 2006, 13:35
Display posts from previous: Sort by

If x#0 and x/|x|<x, which of the following must be true?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 36 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.