Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If x, a, and b are positive integers such that when x is [#permalink]
29 Sep 2010, 21:27

25

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

48% (03:13) correct
52% (02:24) wrong based on 415 sessions

If x, a, and b are positive integers such that when x is divided by a, the remainder is b and when x is divided by b, the remainder is a-2, then which of the following must be true?

A. a is even B. x+b is divisible by a C. x-1 is divisible by a D. b=a-1 E. a+2=b+1

If \(x\), \(a\), and \(b\) are positive integers such that when \(x\) is divided by \(a\), the remainder is \(b\) and when \(x\) is divided by \(b\), the remainder is \(a-2\), then which of the following must be true?

A. \(a\) is even B. \(x+b\) is divisible by \(a\) C. \(x-1\) is divisible by \(a\) D. \(b=a-1\) E. \(a+2=b+1\)

When \(x\) is divided by \(a\), the remainder is \(b\) --> \(x=aq+b\) --> \(remainder=b<a=divisor\) (remainder must be less than divisor); When \(x\) is divided by \(b\), the remainder is \(a-2\) --> \(x=bp+(a-2)\) --> \(remainder=(a-2)<b=divisor\).

So we have that: \(a-2<b<a\), as \(a\) and \(b\) are integers, then it must be true that \(b=a-1\) (there is only one integer between \(a-2\) and \(a\), which is \(a-1\) and we are told that this integer is \(b\), hence \(b=a-1\)).

Thanks Bunnel!! Do you suggest using a particular strategy for these problems or using different strategy for every problem and whichever fits the bill for the given question..?

Thanks Bunnel!! Do you suggest using a particular strategy for these problems or using different strategy for every problem and whichever fits the bill for the given question..?

What do you mean by "these problems"? Remainder problems or must be true problems?

Thanks Bunnel!! Do you suggest using a particular strategy for these problems or using different strategy for every problem and whichever fits the bill for the given question..?

What do you mean by "these problems"? Remainder problems or must be true problems?

Bunnel, thanks so much for the compilation! By 'these problems' I meant 'Must be true' questions in which at times you have more than 1 correct answers. My apologies for the lack of clarity their. Your compilation should be enough to practice. Thanks again!

Re: If x, a, and b are positive integers such that when x is div [#permalink]
04 Sep 2012, 00:14

1

This post received KUDOS

sanjoo wrote:

If x, a, and b are positive integers such that when x is divided by a, the remainder is b and when x is divided by b, the remainder is a−2, then which of the following must be true?

A)a is even b)x+b is divisible by a c)x−1 is divisible by a d)b=a−1 e)a+2=b+1

When divided by A, remainder is B, this implies A > B When divided by B, remainder is A-2, this implies B > A -2

Combining both, B < A < (B + 2) Since, A and B are integers, A = B + 1

Answer is (D) . Cheers! _________________

----------------------------------------------------------------------------------------- What you do TODAY is important because you're exchanging a day of your life for it! -----------------------------------------------------------------------------------------

Re: If x, a, and b are positive integers such that when x is [#permalink]
05 Sep 2012, 22:56

Bunuel wrote:

If \(x\), \(a\), and \(b\) are positive integers such that when \(x\) is divided by \(a\), the remainder is \(b\) and when \(x\) is divided by \(b\), the remainder is \(a-2\), then which of the following must be true?

A. \(a\) is even B. \(x+b\) is divisible by \(a\) C. \(x-1\) is divisible by \(a\) D. \(b=a-1\) E. \(a+2=b+1\)

When \(x\) is divided by \(a\), the remainder is \(b\) --> \(x=aq+b\) --> \(remainder=b<a=divisor\) (remainder must be less than divisor); When \(x\) is divided by \(b\), the remainder is \(a-2\) --> \(x=bp+(a-2)\) --> \(remainder=(a-2)<b=divisor\).

So we have that: \(a-2<b<a\), as \(a\) and \(b\) are integers, then it must be true that \(b=a-1\) (there is only one integer between \(a-2\) and \(a\), which is \(a-1\) and we are told that this integer is \(b\), hence \(b=a-1\)).

Answer: D.

Indeed very nice explanation, but for me, for the person who is not that strong in quants sometimes difficult to keep all that concepts in my head and i am jumping to different approaches. Whenever i see must be true questions i plug in some numbers and see which answer works, since it is must be true questions any numbers should work equally. For example in this problem: lets says x=5, a=3 then b=2, so check all the answers and we see that only d works, but if there will be two answers that work try different numbers till we get only one. It could be time consuming, but when we are asked simple expressions it is easy to find numbers that work well.

Bunuel, do you think there are any pitfalls that i should be aware of? _________________

If you found my post useful and/or interesting - you are welcome to give kudos!

Re: If x, a, and b are positive integers such that when x is [#permalink]
20 Apr 2013, 11:57

My approach of plug in numbers was certainly not the best approach, in a zest of GMAT I dont know why I am loosing to think simple....this was a simple algebra which I complicated with numbers _________________

"When the going gets tough, the tough gets going!"

Re: If x, a, and b are positive integers such that when x is [#permalink]
03 Nov 2013, 00:50

2

This post received KUDOS

This problem can be solved by plugging numbers. For instance if x=5, a=3, b=2 we get: ...when x is divided by a, the remainder is b... > 5/3=1+2/3 ...and when x is divided by b, the remainder is a-2... > 5/2=2+1/2

Both work. If we plug numbers into the answers, only D will work.

If \(x\), \(a\), and \(b\) are positive integers such that when \(x\) is divided by \(a\), the remainder is \(b\) and when \(x\) is divided by \(b\), the remainder is \(a-2\), then which of the following must be true?

A. \(a\) is even B. \(x+b\) is divisible by \(a\) C. \(x-1\) is divisible by \(a\) D. \(b=a-1\) E. \(a+2=b+1\)

When \(x\) is divided by \(a\), the remainder is \(b\) --> \(x=aq+b\) --> \(remainder=b<a=divisor\) (remainder must be less than divisor); When \(x\) is divided by \(b\), the remainder is \(a-2\) --> \(x=bp+(a-2)\) --> \(remainder=(a-2)<b=divisor\).

So we have that: \(a-2<b<a\), as \(a\) and \(b\) are integers, then it must be true that \(b=a-1\) (there is only one integer between \(a-2\) and \(a\), which is \(a-1\) and we are told that this integer is \(b\), hence \(b=a-1\)).

Answer: D.

Hi Bunuel,

I solved this problem with a bit different approach x = p*a + b..........eqn(1) and x = q*b + (a-2)..............eqn(2)

now, equating eqn(1) and eqn(2) p*a + b = q*b + (a-2)

a(p-1) = b(q-1) - 2 if we put p = q = 3

we get, 2a = 2b - 2 or a = b - 1 or a + 2 = b + 1 which is option E

would pl tell me where am i wrong with my approach?? Thanks.

Hello everyone! Researching, networking, and understanding the “feel” for a school are all part of the essential journey to a top MBA. Wouldn’t it be great... ...

Booth allows you flexibility to communicate in whatever way you see fit. That means you can write yet another boring admissions essay or get creative and submit a poem...