Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Subhashghosh is correct, as (-1)^-1 stays negative, while (-2)^-2 becomes positive.

-1 < 1/4

This is an odd problem, though. I agree that it should mention that x and y aren't 0. It also shouldn't ask which option is greater, as this rules out in advance the possibility that the two expressions are equal. A real GMAT question would typically ask if one or the other was greater, not *which* expression is greater. _________________

Dmitry Farber | Manhattan GMAT Instructor | New York

The option here should say x and y != 0 as GMAT does not test 0^0.

(2)

xy > x and x is positive

=> y > 0

But x can be > y or y can be > x

Not Sufficient

(1) + (2)

x^x > y^y

Answer - C

doesnt this statement: "xy > x and x is positive" actually mean

==> y>1

if this is the case i am guessing statement 2 will be sufficient to solve the question. Am i making any mistake here?

If x and y are both integers, which is larger, x^x or y^y?

(1) x = y + 1 --> if \(y\) is positive integer then \(x^x=(y+1)^{y+1}>y^y\) but if \(y=-2\) then \(x=-1\) and \(x^x=-1<\frac{1}{4}=y^y\)

(2) x^y > x and x is positive --> since \(x\) is positive then \(x^{y-1}>1\) --> since \(x\) and \(y\) are integers then \(y>1\). If \(x=1\) and \(y=2\) then \(x^x<y^y\) but if \(x=3\) and \(y=2\) then \(x^x>y^y\). Not sufficient.

(1)+(2) From (2) \(y>1\), so it's a positive integer then from (1) \(x^x=(y+1)^{y+1}>y^y\). Sufficient.

So, my final tally is in. I applied to three b schools in total this season: INSEAD – admitted MIT Sloan – admitted Wharton – waitlisted and dinged No...

HBS alum talks about effective altruism and founding and ultimately closing MBAs Across America at TED: Casey Gerald speaks at TED2016 – Dream, February 15-19, 2016, Vancouver Convention Center...