lololol650 wrote:

bunuel

ok, 1 is pretty much understandable, but for 2, how do you get there? what is the mind process here, in similar problems on the actual test, how do you get there in under 2 minutes? do you start just plugging the numbers in?

Statement 2 is sufficient because, only one pair of integers that can satisfy the condition

X^y = Y^x is 4 and 2.

(4^2 = 2^4). So whenever you see such equation you can rest assured that one integer must be 4 and other one be 2.

Hope that helps.

Not really, they have to specify that such numbers must be positive integers otherwise one could have 4 combinations of 2 and 4