Find all School-related info fast with the new School-Specific MBA Forum

It is currently 30 May 2015, 10:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x and y are non-zero integers and |x| + |y| = 32, what is

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
Current Student
User avatar
Joined: 25 Aug 2011
Posts: 195
Location: India
GMAT 1: 730 Q49 V40
WE: Operations (Insurance)
Followers: 1

Kudos [?]: 128 [2] , given: 11

If x and y are non-zero integers and |x| + |y| = 32, what is [#permalink] New post 10 Mar 2012, 01:26
2
This post received
KUDOS
6
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

64% (02:30) correct 36% (01:16) wrong based on 232 sessions
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY
[Reveal] Spoiler: OA
Expert Post
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27542
Followers: 4329

Kudos [?]: 42659 [3] , given: 6052

Re: If x and y are non-zero integers [#permalink] New post 10 Mar 2012, 04:17
3
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

Manager
Manager
avatar
Joined: 30 May 2013
Posts: 193
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82
Followers: 0

Kudos [?]: 32 [0], given: 72

GMAT ToolKit User
Re: If x and y are non-zero integers [#permalink] New post 21 Sep 2013, 22:32
Bunuel wrote:
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.


Hi Bunel,

i have a doubt in ur explanation

|x|+|y|=32
For this the modulus sign wont have four cases?
(-x,+y), (+x,-y), (+x,+y), (-x,-y)

Please clarify me.

Thanks in Advance,
Rrsnathan.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27542
Followers: 4329

Kudos [?]: 42659 [0], given: 6052

Re: If x and y are non-zero integers [#permalink] New post 22 Sep 2013, 03:35
Expert's post
rrsnathan wrote:
Bunuel wrote:
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.


Hi Bunel,

i have a doubt in ur explanation

|x|+|y|=32
For this the modulus sign wont have four cases?
(-x,+y), (+x,-y), (+x,+y), (-x,-y)

Please clarify me.

Thanks in Advance,
Rrsnathan.


Generally yes. But from \(x=-3y\) we can get that \(x\) and \(y\) have opposite signs, so we are left only with two cases (+, -) or (-, +).

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

2 KUDOS received
Intern
Intern
avatar
Joined: 30 Apr 2010
Posts: 21
Followers: 0

Kudos [?]: 11 [2] , given: 2

Re: If x and y are non-zero integers and |x| + |y| = 32, what is [#permalink] New post 17 Oct 2013, 07:45
2
This post received
KUDOS
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16



(1) -4x - 12y = 0 multiply by (-1)
4x + 12y = 0
4(x + 3y) = 0
x + 3y = 0 we are also told that |x| + |y| = 32, so the only values for x and y that satisfy both equations are x = 24 y = -8 or x = -24 y = 8 in both cases xy is the same (-24)(8) = (24)(-8) ==> Sufficient.

(2) |x| - |y| = 16 multiple values for xy possible, for example x = 24 y = 8 or x = -24 y = 8 ==> Not sufficient.

Answer: A
Senior Manager
Senior Manager
User avatar
Joined: 17 Sep 2013
Posts: 370
Location: United States
Concentration: Marketing, Strategy
GMAT 1: 690 Q48 V37
GMAT 2: 730 Q51 V38
GPA: 3.24
WE: Analyst (Consulting)
Followers: 8

Kudos [?]: 109 [0], given: 135

GMAT ToolKit User Premium Member CAT Tests
Re: If x and y are non-zero integers [#permalink] New post 02 May 2014, 02:44
Bunuel wrote:
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.


Where did I go wrong..

|x| - |y| = 32
--> |-3y| - |y| = 32
--> 3y - |y| = 32
--> |y| = 32- 3y

y= -(32 - 3y)--> y= 16
y= 32 - 3y --> y= 8

:shock: :shock:

Guess I am wrong here...But I dont understand why...Absolute value confuses me a lot...been thru GMAT CLub Book...not sufficient I guess
_________________

Appreciate the efforts...KUDOS for all
Don't let an extra chromosome get you down..:P

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27542
Followers: 4329

Kudos [?]: 42659 [0], given: 6052

Re: If x and y are non-zero integers [#permalink] New post 02 May 2014, 09:21
Expert's post
JusTLucK04 wrote:
Bunuel wrote:
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.


Where did I go wrong..

|x| - |y| = 32
--> |-3y| - |y| = 32
--> 3y - |y| = 32
--> |y| = 32- 3y

y= -(32 - 3y)--> y= 16
y= 32 - 3y --> y= 8

:shock: :shock:

Guess I am wrong here...But I dont understand why...Absolute value confuses me a lot...been thru GMAT CLub Book...not sufficient I guess


It's \(|x| + |y| = 32\), not |x| - |y| = 32.

From (1): \(x=-3y\) --> \(|x| + |y| = 32\) --> \(|-3y| + |y| = 32\) --> \(3|y| + |y| = 32\) --> \(4|y|=32\) --> \(|y|=8\) --> \(y=8\) or \(y=-8\).

If \(y=8\), then \(x=-3y=-24\) --> \(xy=(-24)8\).
If \(y=-8\), then \(x=-3y=24\) --> \(xy=24(-8)\).

Both cases give the same value of xy.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

Senior Manager
Senior Manager
avatar
Joined: 15 Aug 2013
Posts: 331
Followers: 0

Kudos [?]: 21 [0], given: 23

Re: If x and y are non-zero integers and |x| + |y| = 32, what is [#permalink] New post 03 Aug 2014, 16:06
Bunuel wrote:
devinawilliam83 wrote:
If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) -4x – 12y = 0

(2) |x| – |y| = 16

please explain how A is sufficient I got C. on solving A i get 2 possible values of x and y and thus 2 values of XY


If x and y are non-zero integers and |x| + |y| = 32, what is xy?

(1) \(-4x - 12y = 0\) --> \(x+3y=0\) --> \(x=-3y\) --> \(x\) and \(y\) have opposite signs --> so either \(|x|=x\) and \(|y|=-y\) OR \(|x|=-x\) and \(|y|=y\) --> either \(|x|+|y|=-x+y=3y+y=4y=32\): \(y=8\), \(x=-24\), \(xy=-24*8\) OR \(|x|+|y|=x-y=-3y-y=-4y=32\): \(y=-8\), \(x=24\), \(xy=-24*8\), same answer. Sufficient.

(2) \(|x| - |y| = 16\). Sum this one with th equations given in the stem --> \(2|x|=48\) --> \(|x|=24\), \(|y|=8\). \(xy=-24*8\) (x and y have opposite sign) or \(xy=24*8\) (x and y have the same sign). Multiple choices. Not sufficient.

Answer: A.


Hi Bunuel,

Couple of things to clarify:

I understand that you're saying that x and y have opposite signs, but in the equation above, if the absolute value sign is around the equation in the question stem, how can the "minus" be brought outside for either x OR y? meaning, how does it become 4y = 32 vs. -4y = 32. I'm not sure how you can just drop the abs value sign?

Thanks
Manager
Manager
User avatar
Joined: 20 Jan 2014
Posts: 162
Location: India
GMAT Date: 10-13-2014
Followers: 0

Kudos [?]: 9 [0], given: 120

GMAT ToolKit User
Re: If x and y are non-zero integers and |x| + |y| = 32, what is [#permalink] New post 01 Oct 2014, 07:41
Note that one need not determine the values of both x and y to solve this problem; the value of product xy will suffice.

(1) SUFFICIENT: Statement (1) can be rephrased as follows:

-4x – 12y = 0
-4x = 12y
x = -3y

If x and y are non-zero integers, we can deduce that they must have opposite signs: one positive, and the other negative. Therefore, this last equation could be rephrased as

|x| = 3|y|

We don’t know whether x or y is negative, but we do know that they have the opposite signs. Converting both variables to absolute value cancels the negative sign in the expression x = -3y.

We are left with two equations and two unknowns, where the unknowns are |x| and |y|:

|x| + |y| = 32
|x| – 3|y| = 0

Subtracting the second equation from the first yields

4|y| = 32
|y| = 8

Substituting 8 for |y| in the original equation, we can easily determine that |x| = 24. Because we know that one of either x or y is negative and the other positive, xy must be the negative product of |x| and |y|, or -8(24) = -192.

(2) INSUFFICIENT: Statement (2) also provides two equations with two unknowns:

|x| + |y| = 32
|x| - |y| = 16

Solving these equations allows us to determine the values of |x| and |y|: |x| = 24 and |y| = 8. However, this gives no information about the sign of x or y. The product xy could either be -192 or 192.

The correct answer is A.
_________________

Consider +1 Kudos Please :)

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 4979
Followers: 300

Kudos [?]: 55 [0], given: 0

Premium Member
If x and y are non-zero integers and |x| + |y| = 32, what is xy? [#permalink] New post 25 May 2015, 20:21
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Expert Post
EMPOWERgmat Instructor
User avatar
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 2240
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Followers: 95

Kudos [?]: 605 [0], given: 43

Re: If x and y are non-zero integers and |x| + |y| = 32, what is [#permalink] New post 25 May 2015, 22:04
Expert's post
Hi All,

This question has some interesting 'pattern-matching shortcuts' built into it that you can take advantage of IF you take enough notes.

We're told that X and Y are NON-0 INTEGERS and |X| + |Y| = 32. We're asked for the value of (X)(Y).

Before dealing with the two Facts, it's worth noting that the prompt provides a significant limitation on the possible values of X and Y. Since the absolute values will turn negative results into positive ones, and the variables CANNOT be 0, there really are NOT that many possible values for X and Y.

+-1 and +-31
+-2 and +-30
+-3 and +-29
Etc.

We can use this to our advantage when dealing with the two Facts....

Fact 1: -4X - 12Y = 0

Here, we can do some algebra to simplify the equation...

-4X = 12Y
-X = 3Y

This tells us that one variable MUST be POSITIVE and one MUST be NEGATIVE. When we include the absolute value equation given in the prompt, we know that one absolute value must be 3 times the value of the other....

That leaves us with two options for X and Y....
X = +24 and Y = -8
or
X = -24 and Y = +8

Either way, we get the SAME PRODUCT: -192
Fact 1 is SUFFICIENT

Fact 2: |X| – |Y| = 16

Here, we can use the work we did in Fact 1 to save us some time (and help us create some new possibilities)...

IF...
X = +24, Y = -8, the answer to the question is -192

IF...
X = +24, Y = +8, the answer to the question is +192
Fact 2 is INSUFFICIENT

Final Answer:
[Reveal] Spoiler:
A


GMAT assassins aren't born, they're made,
Rich
_________________

Rich Cohen
Rich.C@empowergmat.com
http://www.empowergmat.com

EMPOWERgmat GMAT Club Page, Study Plans, & Discounts
http://gmatclub.com/blog/courses/empowergmat-discount/?fl=menu

Image

Re: If x and y are non-zero integers and |x| + |y| = 32, what is   [#permalink] 25 May 2015, 22:04
    Similar topics Author Replies Last post
Similar
Topics:
1 If x and y are non-zero integers and |x| + |y| = 32, what is alimad 5 24 Jun 2008, 10:31
If x and y are non-zero integers and |x| + |y| = 32, what is FN 2 14 Jun 2008, 09:38
1 Experts publish their posts in the topic If x and y are non-zero integers and |x| + |y| = 32, what is sondenso 1 03 Mar 2008, 22:54
If x and y are non-zero integers and |x| + |y| = 32, what is Piter 3 23 Aug 2007, 13:00
If x and y are non-zero integers and |x| + |y| = 32, what is dreamgmat1 8 09 Jul 2007, 16:21
Display posts from previous: Sort by

If x and y are non-zero integers and |x| + |y| = 32, what is

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.