Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If x and y are positive integers, what is the greatest [#permalink]
23 Aug 2010, 10:46

I am sure there is a clever answer to this, C obviously works... I note that from 2. X=(3y+1)/5, so y has to end in a 3 ie y= 3 13 23 etc. While x= 2 8 14 ie even, x even, can we say then that GCD = 1?

Re: If x and y are positive integers, what is the greatest [#permalink]
23 Aug 2010, 11:58

zest4mba wrote:

If x and y are positive integers, what is the greatest common divisor of x and y?

1. 2x + y = 73 2. 5x – 3y = 1

Say x and y were both divisible by some number d. Then 2x + y would certainly be a multiple of d (if you add two multiples of d, you always get a multiple of d). Now we know from statement 1 that 2x + y is the number 73, so if 2x+y is divisible by d, then 73 must be divisible by d. But 73 is prime, so d could only be 1 or 73. Clearly d can't be 73, since then 2x +y would not equal 73, so the only possible value of d is 1, and thus 1 is the only common divisor of x and y.

You can use the same logic for statement 2: If x and y are both multiples of d, then 5x - 3y would need to be a multiple of d. But 5x-3y = 1, so 1 is a multiple of d, and d must be 1.

D. _________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Re: If x and y are positive integers, what is the greatest [#permalink]
23 Aug 2010, 12:00

1

This post received KUDOS

Expert's post

zest4mba wrote:

If x and y are positive integers, what is the greatest common divisor of x and y?

1. 2x + y = 73 2. 5x – 3y = 1

This is a classic "C trap" question: "C trap" is a problem which is VERY OBVIOUSLY sufficient if both statements are taken together. When you see such question you should be extremely cautious when choosing C for an answer.

(1) 2x+y=73. Suppose GCD(x, y) is some integer d, then x=md and y=nd, for some positive integers m and n. So, we'll have 2(md)+(nd)=d(2m+n)=73. Now, since 73 is a prime number (73=1*73) then d=1 and 2m+n=73 (vice versa is not possible since m and n are positve integers and therefore 2m+n can not equal to 1). Hence we have that GCD(x, y)=d=1. Sufficient.

(2) 5x-3y=1 --> 5x=3y+1. So 5x and 3y are consecutive integers. Two consecutive integers are co-prime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1. So 5x and 3y don't share any common factor but 1, thus x and y also don't share any common factor but 1. Hence, GCD(x, y) is 1. Sufficient.

Re: If x and y are positive integers, what is the greatest [#permalink]
23 Aug 2010, 15:01

Bunuel, Is there a complete discussion on GCDs and LCMs on the forum? Can you please point me to the same? I am trying to recollect why is x y = GCD(x,y) x LCM(x,y)? Thanks _________________

Re: If x and y are positive integers, what is the greatest [#permalink]
29 Aug 2014, 12:13

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________