Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Sep 2014, 07:55

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x and y are positive integers, what is the remainder when

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Director
Director
avatar
Status: Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: Chicago Booth Class of 2015
Joined: 26 Nov 2009
Posts: 995
Followers: 14

Kudos [?]: 398 [0], given: 36

GMAT Tests User
If x and y are positive integers, what is the remainder when [#permalink] New post 04 Aug 2010, 14:17
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

54% (02:23) correct 46% (01:33) wrong based on 135 sessions
If x and y are positive integers, what is the remainder when x is divided by y?

(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4
[Reveal] Spoiler: OA

_________________

Please press kudos if you like my post.

Senior Manager
Senior Manager
User avatar
Joined: 25 Feb 2010
Posts: 459
Followers: 3

Kudos [?]: 35 [0], given: 5

GMAT Tests User
Re: Need solution ! [#permalink] New post 04 Aug 2010, 18:53
1. IMO B

the second one:
(x+y)/y= b+4,
x/y+y/y=b+4,
x/y+1=b+4
or x/y=b+3. the remainder is 3
with this one we agree, it is sufficient.
_________________

GGG (Gym / GMAT / Girl) -- Be Serious

Its your duty to post OA afterwards; some one must be waiting for that...

Intern
Intern
avatar
Joined: 24 Jul 2007
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: Need solution ! [#permalink] New post 04 Aug 2010, 19:48
isnt st 2 enugh?
(X+y)=y(p)+4
so, x= y(p-1)+4; so means remainder of x/y is 4

Please correct me if am wrng. For st1, I cant find an x/y using x=2y(m)+4
Expert Post
6 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29641
Followers: 3488

Kudos [?]: 26202 [6] , given: 2706

Re: Need solution ! [#permalink] New post 04 Aug 2010, 21:46
6
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
nusmavrik wrote:
If x and y are positive integers, what is the remainder when x is divided by y?
(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4


Positive integer x divided by positive integer y yields remainder of r can be expressed as x=yq+r. Question is r=?

(1) When x is divided by 2y, the remainder is 4. If x=20 and y=8 (satisfies the given statemnet as 20 divided by 2*8=16 yields reminder of 4), then x divided by y yields r=4 (20 divided by 8 yields remainder of 4) BUT if x=10 and y=3 (satisfies the given statemnet as 10 divided by 2*3=6 yields reminder of 4), then x divided by y yields r=1 (10 divided by 3 yields remainder of 1). Two different answers. Not sufficient.

(2) When x + y is divided by y, the remainder is 4 --> x+y=yp+4 --> x=y(p-1)+4 (x is 4 more than multiple of y)--> this statement directly tells us that x divided by y yields remainder of 4. Sufficient.

Answer: B.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: Chicago Booth Class of 2015
Joined: 26 Nov 2009
Posts: 995
Followers: 14

Kudos [?]: 398 [0], given: 36

GMAT Tests User
Re: Need solution ! [#permalink] New post 04 Aug 2010, 23:14
trapped !

Its the quotient that decreases (minus 1). The remainder is unaffected.

E.g (3 + 5) /5 ----> remainder = 3, quotient = 1
3/5 ------> remainder = 3, quotient = 0

onedayill wrote:
1. IMO B

the second one:
(x+y)/y= b+4,
x/y+y/y=b+4,
x/y+1=b+4
or x/y=b+3. the remainder is 3
with this one we agree, it is sufficient.

_________________

Please press kudos if you like my post.

Intern
Intern
avatar
Joined: 23 Jan 2011
Posts: 8
Followers: 0

Kudos [?]: 1 [0], given: 3

Re: Need solution ! [#permalink] New post 24 Feb 2011, 11:30
Bunuel wrote:
nusmavrik wrote:
If x and y are positive integers, what is the remainder when x is divided by y?
(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4


Positive integer x divided by positive integer y yields remainder of r can be expressed as x=yq+r. Question is r=?

(1) When x is divided by 2y, the remainder is 4. If x=20 and y=8 (satisfies the given statemnet as 20 divided by 2*8=16 yields reminder of 4), then x divided by y yields r=4 (20 divided by 8 yields remainder of 4) BUT if x=10 and y=3 (satisfies the given statemnet as 10 divided by 2*3=6 yields reminder of 4), then x divided by y yields r=1 (10 divided by 3 yields remainder of 1). Two different answers. Not sufficient.

(2) When x + y is divided by y, the remainder is 4 --> x+y=yp+4 --> x=y(p-1)+4 (x is 4 more than multiple of y)--> this statement directly tells us that x divided by y yields remainder of 4. Sufficient.

Answer: B.

Hope it's clear.


I'm confused. With the same proof given for the second point, could I not convince myself that 1 would suffice?
eg: x = yp + r
From (1) I could say x = 2yp + 4
(or) x = (2p)y + 4
Clearly this statement tells us that x is 4 more than a multiple of y as well. Why can I not convince myself at this step that the statement would suffice? Although, the statement does not suffice since the logic fails when you plug in (x=10,y=3) .
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29641
Followers: 3488

Kudos [?]: 26202 [0], given: 2706

Re: Need solution ! [#permalink] New post 24 Feb 2011, 11:40
Expert's post
bugSniper wrote:
Bunuel wrote:
nusmavrik wrote:
If x and y are positive integers, what is the remainder when x is divided by y?
(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4


Positive integer x divided by positive integer y yields remainder of r can be expressed as x=yq+r. Question is r=?

(1) When x is divided by 2y, the remainder is 4. If x=20 and y=8 (satisfies the given statemnet as 20 divided by 2*8=16 yields reminder of 4), then x divided by y yields r=4 (20 divided by 8 yields remainder of 4) BUT if x=10 and y=3 (satisfies the given statemnet as 10 divided by 2*3=6 yields reminder of 4), then x divided by y yields r=1 (10 divided by 3 yields remainder of 1). Two different answers. Not sufficient.

(2) When x + y is divided by y, the remainder is 4 --> x+y=yp+4 --> x=y(p-1)+4 (x is 4 more than multiple of y)--> this statement directly tells us that x divided by y yields remainder of 4. Sufficient.

Answer: B.

Hope it's clear.


I'm confused. With the same proof given for the second point, could I not convince myself that 1 would suffice?
eg: x = yp + r
From (1) I could say x = 2yp + 4
(or) x = (2p)y + 4
Clearly this statement tells us that x is 4 more than a multiple of y as well. Why can I not convince myself at this step that the statement would suffice? Although, the statement does not suffice since the logic fails when you plug in (x=10,y=3) .


That's a good question.
A. x=y(2k)+4, k any integer >=0.
B. x=y(p-1)+4, p any integer >=0.

Why A is not sufficient to determine the remainder and B is? Why did I use number plugging to show this in the first case and didn't in the second?

If we are told that x divided by y gives a remainder of 4, means x=yp+4 where p is integer >=0. We don't know x and y so p (quotient) can be any integer.

Look at equation A, the quotient is 2k, 2k is even. It can be rephrased as x divided by y will give the remainder of 4 IF quotient is even. But what about the cases when quotient is odd? We don't know that so we must check to determine this.

As for B. Quotient here is (p-1), which for integer values of p can give us ANY value: any even as well as any odd. So basically x=y(p-1)+4 is the same as x=yp+4. No need for double checking.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2047
Followers: 128

Kudos [?]: 920 [0], given: 376

GMAT Tests User
Re: Need solution ! [#permalink] New post 24 Feb 2011, 11:53
B is sufficient by using the rule of remainders additive property:
(x+y)/y leaves a remainder of 4.
Means: remainder left by x/y + remainder left by y/y = 4
remainder left by x/y+0=4
remainder left by x/y=4

At least B is Sufficient.
_________________

~fluke

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Manager
Manager
User avatar
Joined: 23 Oct 2011
Posts: 85
Followers: 0

Kudos [?]: 20 [1] , given: 34

Re: Need solution ! [#permalink] New post 11 Nov 2011, 20:24
1
This post received
KUDOS
Bunuel wrote:
That's a good question.
A. x=y(2k)+4, k any integer >=0.
B. x=y(p-1)+4, p any integer >=0.

Why A is not sufficient to determine the remainder and B is? Why did I use number plugging to show this in the first case and didn't in the second?

If we are told that x divided by y gives a remainder of 4, means x=yp+4 where p is integer >=0. We don't know x and y so p (quotient) can be any integer.

Look at equation A, the quotient is 2k, 2k is even. It can be rephrased as x divided by y will give the remainder of 4 IF quotient is even. But what about the cases when quotient is odd? We don't know that so we must check to determine this.

As for B. Quotient here is (p-1), which for integer values of p can give us ANY value: any even as well as any odd. So basically x=y(p-1)+4 is the same as x=yp+4. No need for double checking.

Hope it's clear.


Bunuel could we say the following? (Having in mind that the Remainder depends on the divisor)

(1) When x is divided by 2y, the remainder is 4

statement 1 ----> x=2*y*k+4, k integer

Therefore because the divisor has to be larger (not equal because it is stated that a reminder exists) than the remainder: 2*y>4 --> y>2 -->y>=3

If y (divisor) is smaller than 4 then the remainder changes and if it is larger than 4 the remainder is 4.

For example:
if y=3 then x=2*3*k+3+1, R=1
if y=4 then x=4*2*k+4+0, R=0
(if y=5 then x=2*5k+4, R=4)

Therefore Insufficient.

2) When x + y is divided by y, the remainder is 4

statement 2 ----> x+y=y*k+4, k integer

We are told that the remainder is 4, therefore y>=5! Which means that remainder will always be 4.
Expert Post
6 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4759
Location: Pune, India
Followers: 1112

Kudos [?]: 5033 [6] , given: 164

Re: If x and y are positive integers, what is the remainder when [#permalink] New post 16 Nov 2011, 21:50
6
This post received
KUDOS
Expert's post
nusmavrik wrote:
If x and y are positive integers, what is the remainder when x is divided by y?
(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4


If you understand the concept of divisibility well, you can pretty much do this orally in less than 30 secs with a little bit of visualization. Divisibility involves grouping. Check these out first since I am explaining using the concept discussed in these posts:
http://www.veritasprep.com/blog/2011/04 ... unraveled/
http://www.veritasprep.com/blog/2011/04 ... y-applied/

Stmnt 1: When x is divided by 2y, the remainder is 4

When you divide x by 2y, you make groups with 2y balls in each and you have 4 balls leftover.
Instead, if you divide x by y, you may have 4 balls leftover or you may have fewer balls if y is less than or equal to 4 i.e. say if y = 3, you could make another group of 3 balls and you will have only 1 ball leftover. So you could have different remainders. Not sufficient.

Stmnt 2: When x + y is divided by y, the remainder is 4

When you make groups of y balls each from (x+y), the y balls make 1 group and you are left with x balls. If the remainder is 4, it means when you make groups of y balls each from x balls, you have 4 balls leftover.
Since the question asks us: how many balls are leftover when you make groups of y balls from x balls, you get your answer directly as '4'.
Sufficient.

Answer (B)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 19 Oct 2011
Posts: 87
Followers: 0

Kudos [?]: 18 [0], given: 1

Re: If x and y are positive integers, what is the remainder when [#permalink] New post 17 Nov 2011, 06:57
good question really!
get into the trap!
learn a lesson here
Manager
Manager
User avatar
Joined: 09 Nov 2011
Posts: 130
Followers: 1

Kudos [?]: 40 [0], given: 16

GMAT Tests User
Re: If x and y are positive integers, what is the remainder when [#permalink] New post 17 Nov 2011, 08:23
Karishma...Really impressive reply..!! Very precise..and easily understandable...went through your post too...had never imagined division from this perspective...i think this is a better approach to these questions..! Thanks for sharing!
_________________

Time to play the game...

Intern
Intern
avatar
Status: Stay Hungry, Stay Foolish.
Joined: 05 Sep 2011
Posts: 41
Location: India
Concentration: Marketing, Social Entrepreneurship
GMAT 1: 650 Q V
Followers: 1

Kudos [?]: 8 [0], given: 6

Re: If x and y are positive integers, what is the remainder when [#permalink] New post 17 Nov 2011, 08:58
I must admit,initially,i did get trapped in option A & B both and would've answered both are sufficient,but carefully after evaluating,realized, only B suffices.
A doesn't.
Senior Manager
Senior Manager
avatar
Joined: 12 Oct 2011
Posts: 276
Followers: 0

Kudos [?]: 21 [0], given: 110

Re: If x and y are positive integers, what is the remainder when [#permalink] New post 17 Dec 2011, 18:53
Yes a tricky question. Karishma, thank you for the detailed explanation. The concept of "grouping" applied to division, although new to me, is easily understandable and very simple indeed. :)
_________________

Consider KUDOS if you feel the effort's worth it

Manager
Manager
avatar
Joined: 06 Jun 2011
Posts: 159
Followers: 0

Kudos [?]: 18 [0], given: 15

GMAT Tests User
Re: If x and y are positive integers, what is the remainder when [#permalink] New post 17 Dec 2011, 22:52
nice explanations guys
Director
Director
avatar
Joined: 24 Aug 2009
Posts: 509
Schools: Harvard, Columbia, Stern, Booth, LSB,
Followers: 9

Kudos [?]: 371 [0], given: 241

Re: Need solution ! [#permalink] New post 12 Sep 2012, 05:40
Bunuel wrote:
nusmavrik wrote:
If x and y are positive integers, what is the remainder when x is divided by y?
(1) When x is divided by 2y, the remainder is 4
(2) When x + y is divided by y, the remainder is 4


Positive integer x divided by positive integer y yields remainder of r can be expressed as x=yq+r. Question is r=?

(1) When x is divided by 2y, the remainder is 4. If x=20 and y=8 (satisfies the given statemnet as 20 divided by 2*8=16 yields reminder of 4), then x divided by y yields r=4 (20 divided by 8 yields remainder of 4) BUT if x=10 and y=3 (satisfies the given statemnet as 10 divided by 2*3=6 yields reminder of 4), then x divided by y yields r=1 (10 divided by 3 yields remainder of 1). Two different answers. Not sufficient.

(2) When x + y is divided by y, the remainder is 4 --> x+y=yp+4 --> x=y(p-1)+4 (x is 4 more than multiple of y)--> this statement directly tells us that x divided by y yields remainder of 4. Sufficient.

Answer: B.

Hope it's clear.


Hi Bunuel,

This time i didn't get the explanation. Can you kindly solve the question using algebraic method rather than using any numbers?

Waiting for clarification.
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS.
Kudos always maximizes GMATCLUB worth
-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2398
Followers: 196

Kudos [?]: 38 [0], given: 0

Premium Member
Re: If x and y are positive integers, what is the remainder when [#permalink] New post 14 Oct 2013, 01:05
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: If x and y are positive integers, what is the remainder when   [#permalink] 14 Oct 2013, 01:05
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic If x and y are positive integers, what is the remainder when dzodzo85 6 19 Mar 2012, 23:40
2 Experts publish their posts in the topic If x and y are positive integers, what is the remainder when banksy 4 18 Feb 2011, 11:00
2 Experts publish their posts in the topic If x and y are positive integer, what is the remainder when gmat620 4 02 Nov 2009, 06:15
4 Experts publish their posts in the topic If x and y are positive integers, what is the remainder when xALIx 6 01 Jul 2008, 14:57
4 Experts publish their posts in the topic If x and y are positive integers, what is the remainder when raviatreya 9 22 Apr 2005, 09:46
Display posts from previous: Sort by

If x and y are positive integers, what is the remainder when

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.