Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Aug 2016, 15:16
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x is a positive integer, is x^3-3x^2+2x divisible by 4?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 02 Jun 2011
Posts: 159
Followers: 1

Kudos [?]: 66 [0], given: 11

If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 06 Feb 2012, 13:30
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

66% (02:19) correct 34% (01:17) wrong based on 243 sessions

HideShow timer Statistics

If x is a positive integer, is x^3-3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer
(2) x=2z+2, where z is an integer

[Reveal] Spoiler:
in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??
[Reveal] Spoiler: OA
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34393
Followers: 6244

Kudos [?]: 79304 [0], given: 10016

Re: data sufficiency [#permalink]

Show Tags

New post 06 Feb 2012, 13:44
Expert's post
1
This post was
BOOKMARKED
kashishh wrote:
if x is a +ve integer, is x³ - 3x² + 2x divisible by 4?
(1) x = 4y + 4, where y is an integer
(2) x = 2z + 2, where z is an integer

in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


If x is a positive integer , is x^3 - 3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer --> since x itself is divisible by 4 then x^3-3x^2+2x is divisible by 4. Sufficient.

(2) x=2z+2, where z is an integer --> x^3-3x^2+2x=x(x^2-3x+2)=(2z+2)(4z^2+8z+4-6z-6+2)=4(z+1)(2z^2+z) --> hence this expression is divisible by 4. Sufficient.

Answer: D.

As for your question: if x=2 then x^3-3x^2+2x=0. Now, zero is divisible by EVERY integer except zero itself, as 0/integer=integer.

For more on this topic check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 18 Nov 2011
Posts: 37
Concentration: Strategy, Marketing
GMAT Date: 06-18-2013
GPA: 3.98
Followers: 0

Kudos [?]: 11 [0], given: 0

Re: If x is a positive integer , is x^3 - 3x^2+2x divisible by 4 [#permalink]

Show Tags

New post 20 Feb 2013, 21:38
What level would this be considered? 650?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34393
Followers: 6244

Kudos [?]: 79304 [0], given: 10016

Re: If x is a positive integer , is x^3 - 3x^2+2x divisible by 4 [#permalink]

Show Tags

New post 21 Feb 2013, 03:30
Intern
Intern
avatar
Joined: 08 Dec 2012
Posts: 7
Followers: 0

Kudos [?]: 7 [0], given: 10

Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 26 Feb 2013, 20:16
If x is a positive integer, is x^3-3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer
(2) x=2z+2, where z is an integer

(1): [4(y+1)]^3 - 3 [4(y+1)]^2 + 2 [4(y+1)] = 4^3(y+1)^3 - 3 (4^2) (y+1)^2 + 2 (4) (y+1) --> divisible by 4: sufficient
(2): 2^3(z+1)^3 - 3 (2^2) (z+1)^2 + 2 (2) (z+1) --> divisible by 4: sufficient
==> Answer is D
Current Student
User avatar
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 53

Kudos [?]: 511 [0], given: 355

GMAT ToolKit User
Re: data sufficiency [#permalink]

Show Tags

New post 11 Jan 2014, 17:37
Bunuel wrote:
kashishh wrote:
if x is a +ve integer, is x³ - 3x² + 2x divisible by 4?
(1) x = 4y + 4, where y is an integer
(2) x = 2z + 2, where z is an integer

in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


If x is a positive integer , is x^3 - 3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer --> since x itself is divisible by 4 then x^3-3x^2+2x is divisible by 4. Sufficient.

(2) x=2z+2, where z is an integer --> x^3-3x^2+2x=x(x^2-3x+2)=(2z+2)(4z^2+8z+4-6z-6+2)=4(z+1)(2z^2+z) --> hence this expression is divisible by 4. Sufficient.

Answer: D.

As for your question: if x=2 then x^3-3x^2+2x=0. Now, zero is divisible by EVERY integer except zero itself, as 0/integer=integer.

For more on this topic check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it's clear.


For the second statement could one only say that since x is a multiple of 2 and thus even then x-2 will also be even and that means that E*E = E and multiple of 4?

Thanks

Cheers
J :)
Current Student
avatar
Joined: 05 Dec 2013
Posts: 16
Followers: 0

Kudos [?]: 8 [0], given: 1

Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 11 Jan 2014, 19:17
kashishh wrote:
If x is a positive integer, is x^3-3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer
(2) x=2z+2, where z is an integer

[Reveal] Spoiler:
in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


Bunuel - could we have solved/approached the question this way?

Given the question stem - x^3-3x^2+2x - factor out an "x" and apply the FOIL method --> therefore we are left with
x(x^2 - 3x +2x) = 0 --> x(x - 2)(x - 1)
Therefore, x must equal 0, 1, or 2

With that said, plug in the values of 0, 1, and 2 into each of statement one and two to determine if they are sufficient
Statement 1 --> only 0 works
Statement 2 --> both 0 and 2 work (due to the value being an integer)

Therefore, OA is D because we can determine what exact values of of the question stems can be valid.

Let me know what you think, just trying to help out with different ways to approach this question.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34393
Followers: 6244

Kudos [?]: 79304 [0], given: 10016

Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 12 Jan 2014, 06:52
bparrish89 wrote:
kashishh wrote:
If x is a positive integer, is x^3-3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer
(2) x=2z+2, where z is an integer

[Reveal] Spoiler:
in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


Bunuel - could we have solved/approached the question this way?

Given the question stem - x^3-3x^2+2x - factor out an "x" and apply the FOIL method --> therefore we are left with
x(x^2 - 3x +2x) = 0 --> x(x - 2)(x - 1)
Therefore, x must equal 0, 1, or 2

With that said, plug in the values of 0, 1, and 2 into each of statement one and two to determine if they are sufficient
Statement 1 --> only 0 works
Statement 2 --> both 0 and 2 work (due to the value being an integer)

Therefore, OA is D because we can determine what exact values of of the question stems can be valid.

Let me know what you think, just trying to help out with different ways to approach this question.


Your approach is not correct. Notice that we are NOT told that x^3-3x^2+2x is 0, thus your derivation that x is 0, 1, or 2 is not right.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Current Student
User avatar
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 53

Kudos [?]: 511 [0], given: 355

GMAT ToolKit User
Re: data sufficiency [#permalink]

Show Tags

New post 29 Jan 2014, 15:47
Bunuel wrote:
kashishh wrote:
if x is a +ve integer, is x³ - 3x² + 2x divisible by 4?
(1) x = 4y + 4, where y is an integer
(2) x = 2z + 2, where z is an integer

in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


If x is a positive integer , is x^3 - 3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer --> since x itself is divisible by 4 then x^3-3x^2+2x is divisible by 4. Sufficient.

(2) x=2z+2, where z is an integer --> x^3-3x^2+2x=x(x^2-3x+2)=(2z+2)(4z^2+8z+4-6z-6+2)=4(z+1)(2z^2+z) --> hence this expression is divisible by 4. Sufficient.

Answer: D.

As for your question: if x=2 then x^3-3x^2+2x=0. Now, zero is divisible by EVERY integer except zero itself, as 0/integer=integer.

For more on this topic check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it's clear.


Is it enough to note that we have (x)(x-2)(x-1)

So then if x is even so will (x-2), so basically just knowing that x is even for each statement separately?

Or do we need to go through all the replacing and factorization for each statement?

Please advice
Thanks!
Cheers!
J :)
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34393
Followers: 6244

Kudos [?]: 79304 [0], given: 10016

Re: data sufficiency [#permalink]

Show Tags

New post 29 Jan 2014, 22:52
jlgdr wrote:
Bunuel wrote:
kashishh wrote:
if x is a +ve integer, is x³ - 3x² + 2x divisible by 4?
(1) x = 4y + 4, where y is an integer
(2) x = 2z + 2, where z is an integer

in the above (1) is exactly a multiple for 4, so sufficient BUT in (2) if z = 0 , then x = 2, which when substituted in quest will not be divisible by 4. right?
but the answer is D, both alone sufieicient

can anyone guide. do i have a wrong approach towards DS??


If x is a positive integer , is x^3 - 3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer --> since x itself is divisible by 4 then x^3-3x^2+2x is divisible by 4. Sufficient.

(2) x=2z+2, where z is an integer --> x^3-3x^2+2x=x(x^2-3x+2)=(2z+2)(4z^2+8z+4-6z-6+2)=4(z+1)(2z^2+z) --> hence this expression is divisible by 4. Sufficient.

Answer: D.

As for your question: if x=2 then x^3-3x^2+2x=0. Now, zero is divisible by EVERY integer except zero itself, as 0/integer=integer.

For more on this topic check Number Theory chapter of Math Book: math-number-theory-88376.html

Hope it's clear.


Is it enough to note that we have (x)(x-2)(x-1)

So then if x is even so will (x-2), so basically just knowing that x is even for each statement separately?

Or do we need to go through all the replacing and factorization for each statement?

Please advice
Thanks!
Cheers!
J :)


Didn't you answer your own question?

\(x^3 - 3x^2+2x=x (x-1) (x-2)\) --> if x is even, then x-2 is also even, thus x(x-1)(x-2) is divisible by 4.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 11029
Followers: 509

Kudos [?]: 133 [0], given: 0

Premium Member
Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 31 Mar 2015, 07:16
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Manager
Manager
User avatar
Joined: 23 Sep 2015
Posts: 94
Concentration: General Management, Finance
GMAT 1: 680 Q46 V38
GMAT 2: 690 Q47 V38
GPA: 3.5
Followers: 0

Kudos [?]: 10 [0], given: 213

Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 14 Nov 2015, 11:48
jlgdr wrote:

Is it enough to note that we have (x)(x-2)(x-1)

So then if x is even so will (x-2), so basically just knowing that x is even for each statement separately?

Or do we need to go through all the replacing and factorization for each statement?

Please advice
Thanks!
Cheers!
J :)


This is how I did it,

I think that if we have 3 consecutive integers in the format x(x-1)(x-2) and x is even, then it will be divisible by 4 (2)(3)(4)

If x = Odd it may not be divisible by 4 (3)(2)(1)
Expert Post
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 1649
GPA: 3.82
Followers: 111

Kudos [?]: 926 [0], given: 0

Premium Member CAT Tests
Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4? [#permalink]

Show Tags

New post 17 Nov 2015, 10:32
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If x is a positive integer, is x^3-3x^2+2x divisible by 4?

(1) x=4y+4, where y is an integer
(2) x=2z+2, where z is an integer

If we modify the question, x^3-3x^2+2x=4t? (t is an integer), --> x(x^2-3x+2)=4t? and we ultimately want to know whether
x(x-1)(x-2)=4t, which is the same as whether x-2 is even
For condition 1, from x=4y+4, x-2=4y+2=2(2y+1). This is even and the condition is sufficient
For condition 2, from x=2z+2, x-2=2z. This is also even and the condition sufficiently answers the question 'yes'
The answer becomes (D).

Once we modify the original condition and the question according to the variable approach method 1, we can solve approximately 30% of DS questions.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Re: If x is a positive integer, is x^3-3x^2+2x divisible by 4?   [#permalink] 17 Nov 2015, 10:32
    Similar topics Author Replies Last post
Similar
Topics:
1 Is a positive integer X divisible by 30? stonecold 1 23 Apr 2016, 06:55
1 Experts publish their posts in the topic Is the positive integer x divisible by 6? Bunuel 1 31 Mar 2016, 00:59
6 Experts publish their posts in the topic Is the positive integer X divisible by 21? Bunuel 6 14 Mar 2016, 07:47
10 Experts publish their posts in the topic Is positive integer x divisible by 24? BabySmurf 7 23 Jan 2014, 13:50
2 If x is a positive integer, is x divisible by 48? changhiskhan 5 20 Mar 2010, 12:38
Display posts from previous: Sort by

If x is a positive integer, is x^3-3x^2+2x divisible by 4?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.