Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

1. (1-2x) (1+x) < 0 . 2 possibilities a) 1-2x< 0 and 1+x >0 => x>1/2 and x > -1 => x >1/2 b) 1-2x> 0 and 1+x <0 => x<1/2 and x < -1 => x < -1 When x < -1, |x| >1 is true but when x>1/2 |x|>1 may or may not be true. So 1 alone is not sufficient

2. (1-x) (1+2x) < 0 . Again 2 possibilities a) 1-x< 0 and 1+2x >0 => x>1 and x > -1/2 => x >1 b) 1-x> 0 and 1+2x <0 => x<1 and x < -1/2 => x < -1/2 When x >1, |x| >1 is true but when x<-1/2 |x|>1 may or may not be true. So 2 alone is not sufficient

Combining 1 and 2 ,

x>1/2 or x< -1 and x>1 or x<-1/2 => x<-1 or x>1 So 1 and 2 combined are sufficient. Answer C _________________

___________________________________ Please give me kudos if you like my post

1. (1-2x) (1+x) < 0 . 2 possibilities a) 1-2x< 0 and 1+x >0 => x>1/2 and x > -1 => x >1/2 b) 1-2x> 0 and 1+x <0 => x<1/2 and x < -1 => x < -1 When x < -1, |x| >1 is true but when x>1/2 |x|>1 may or may not be true. So 1 alone is not sufficient

2. (1-x) (1+2x) < 0 . Again 2 possibilities a) 1-x< 0 and 1+2x >0 => x>1 and x > -1/2 => x >1 b) 1-x> 0 and 1+2x <0 => x<1 and x < -1/2 => x < -1/2 When x >1, |x| >1 is true but when x<-1/2 |x|>1 may or may not be true. So 2 alone is not sufficient

Combining 1 and 2 ,

x>1/2 or x< -1 and x>1 or x<-1/2 => x<-1 or x>1 So 1 and 2 combined are sufficient. Answer C

Bunuel, could you explain how to interpret all the diverse results of these inequalities? Thanks!

This post might help to get the ranges for (1) and (2) - "How to solve quadratic inequalities - Graphic approach": x2-4x-94661.html#p731476

If x is an integer, is |x| > 1?

First of all: is |x| > 1 means is x<-1 (-2, -3, -4, ...) or x>1 (2, 3, 4, ...), so for YES answer x can be any integer but -1, 0, and 1.

(1) (1 - 2x)(1 + x) < 0 --> rewrite as (2x-1)(x+1)>0 (so that the coefficient of x^2 to be positive after expanding): roots are x=-1 and x=\frac{1}{2} --> ">" sign means that the given inequality holds true for: x<-1 and x>\frac{1}{2}. x could still equal to 1, so not sufficient.

(2) (1 - x)(1 + 2x) < 0 --> rewrite as (x-1)(2x+1)>0: roots are x=-\frac{1}{2} and x=1 --> ">" sign means that the given inequality holds true for: x<-\frac{1}{2} and x>1. x could still equal to -1, so not sufficient.

(1)+(2) Intersection of the ranges from (1) and (2) is x<-1 and x>1. Sufficient.

Re: If x is an integer, is |x| > 1? [#permalink]
14 Feb 2014, 06:41

We are asked if x>1 or x<-1.

From statement 1 we get that x>1/2 or x<-1. But note that we are told that x is an integer. Therefore x>1/2 is x>=1. But still not sufficient From statement 2 we get that x<-1/2 and x>1. Same Here

Both together we get that

x>=1 or x<-1 x<=-1 or x>1

Both together we get that x<-1 or x>1 so our answer is YES. This is because x>1 is more restrictive than x>=1. Same for the other.

Well, I’ve had a busy month! In February I traveled to interview and visit three MBA programs. Earlier in the month I also went to Florida on vacation. This...

One of the reasons why I even considered Tepper is the location. Last summer I stopped in Pittsburgh on the way home from a road trip. We were vacationing...

“Which French bank was fined $613bn for manipulating the Euribor rate?” asked quizmaster Andrew Hill in this year’s FT MBA Quiz. “Société Générale” responded the...

The most time-consuming part of writing the essays comes before and after the act of writing. Jotting down an answer to the questions should take a few hours at most. By then you...