Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

(1) x^2 > 9 --> \(x<-3\) or \(x>3\) as given that \(x<0\) then we have that \(x<-3\). Sufficient.

(2) x^3 < –9 --> if \(x=-3\) (\(x^3=-27<-9\)) then the answer will be NO (as \(x\) equals to -3 and is not less than -3) but if \(x=-4\) (\(x^3=-64<-9\)) then the answer will be YES. Not sufficient.

1. \(x^2>9\) \(|x|>3\) \(x>3 \hspace{3} or \hspace{3} x<-3\) We know that x is -ve. Thus; \(x<-3\) Sufficient.

2. \(x^3<-9\) \(x^3\) can be -27 making x=-3 or \(x^3\) can be -64 making x=-4[/m] We can't conclude that x is definitely smaller than -3. Not Sufficient.

Re: If x is negative, is x < 3 ? [#permalink]
10 Mar 2013, 15:02

1

This post received KUDOS

they are asking is x<-3, not if x^3<-3. -27 and -64 are the values of x^3. so x=-3 and x=-4. negative 3 isn't less than negative 3, so answer is no. negative 4 is less than negative 3, so answer is yes. insufficient.

Re: If x is negative, is x < 3 ? [#permalink]
20 Jun 2013, 13:37

1

This post received KUDOS

Statement 2 : X^3<-9 => We know (-2)^3 = -8 and (-3)^3= -27 => it isnt given in the q that x has to be an integer => x can be any decimal slightly less than -2.0 ie. -2.5^3 (-15) and thus give an answer NO & x can be any number <-3 (=>x^3 <-27)and give an answer YES. Thus, insufficient

Re: If x is negative, is x < 3 ? [#permalink]
12 Aug 2014, 09:12

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: If x is negative, is x < 3 ? [#permalink]
29 Aug 2015, 00:55

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Hey, everyone. After a hectic orientation and a weeklong course, Managing Groups and Teams, I have finally settled into the core curriculum for Fall 1, and have thus found...

MBA Acceptance Rate by Country Most top American business schools brag about how internationally diverse they are. Although American business schools try to make sure they have students from...

After I was accepted to Oxford I had an amazing opportunity to visit and meet a few fellow admitted students. We sat through a mock lecture, toured the business...