If x is not equal to 0, is |x| less than 1? (1) x/|x| < x : GMAT Data Sufficiency (DS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 24 Jan 2017, 06:41

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If x is not equal to 0, is |x| less than 1? (1) x/|x| < x

 post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Intern
Joined: 06 Oct 2009
Posts: 8
Followers: 0

Kudos [?]: 2 [1] , given: 0

If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

02 Nov 2009, 04:16
1
This post received
KUDOS
00:00

Difficulty:

85% (hard)

Question Stats:

52% (02:40) correct 48% (01:36) wrong based on 112 sessions

### HideShow timer Statistics

If x is not equal to 0, is |x| less than 1?

(1) x/|x| < x

(2) |x| > x

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-x-is-not-equal-to-0-is-x-less-than-1-1-x-x-x-86140.html
[Reveal] Spoiler: OA

Last edited by Engr2012 on 17 Nov 2015, 07:47, edited 2 times in total.
TOPIC LOCKED
Senior Manager
Joined: 18 Aug 2009
Posts: 303
Followers: 3

Kudos [?]: 273 [0], given: 9

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

02 Nov 2009, 05:34
gmatforce wrote:
If x is not equal to 0, is |x| less than 1?

(1) x/|x| < x

(2) |x| > x

B

(1)
x=-1/2
-1<-1/2

x=2
1<2
Can't say if x is less than 1

(2)
x has to be negative for the absolute value to be greater. Sufficient.
Math Expert
Joined: 02 Sep 2009
Posts: 36625
Followers: 7105

Kudos [?]: 93642 [2] , given: 10583

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

02 Nov 2009, 06:25
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
I think B is not correct. This question was discussed before, below see my post from the earlier discussion:

x#0, is $$|x|<1$$? Which means is $$-1<x<1$$? (x#0)

(1) $$\frac{x}{|x|}< x$$
Two cases:
A. $$x<0$$ --> $$\frac{x}{-x}<x$$ --> $$-1<x$$. But remember that $$x<0$$, so $$-1<x<0$$

B. $$x>0$$ --> $$\frac{x}{x}<x$$ --> $$1<x$$.

Two ranges $$-1<x<0$$ or $$x>1$$. Which says that x either in the first range or in the second. Not sufficient to answer whether $$-1<x<1$$. (For instance $$x$$ can be $$-0.5$$ or $$3$$)

(2) $$|x| > x$$ Well this basically tells that $$x$$ is negative. But still if we want to see how it works:
Two cases again:
$$x<0$$--> $$-x>x$$--> $$x<0$$.

$$x>0$$ --> $$x>x$$: never correct.

Only one range: $$x<0$$, but still insufficient to say whether $$-1<x<1$$. (For instance $$x$$ can be $$-0.5$$ or $$-10$$)

(1)+(2) $$x<0$$ (from 2) and $$-1<x<0$$ or $$x>1$$ (from 1), hence $$-1<x<0$$. Every $$x$$ from this range is definitely in the range $$-1<x<1$$. Sufficient.

Answer: C.
_________________
Senior Manager
Joined: 18 Aug 2009
Posts: 303
Followers: 3

Kudos [?]: 273 [0], given: 9

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

02 Nov 2009, 06:34
Bunuel wrote:
I think B is not correct. This question was discussed before, below see my post from the earlier discussion:

x#0, is $$|x|<1$$? Which means is $$-1<x<1$$? (x#0)

(1) $$\frac{x}{|x|}< x$$
Two cases:
A. $$x<0$$ --> $$\frac{x}{-x}<x$$ --> $$-1<x$$. But remember that $$x<0$$, so $$-1<x<0$$

B. $$x>0$$ --> $$\frac{x}{x}<x$$ --> $$1<x$$.

Two ranges $$-1<x<0$$ or $$x>1$$. Which says that x either in the first range or in the second. Not sufficient to answer whether $$-1<x<1$$. (For instance $$x$$ can be $$-0.5$$ or $$3$$)

(2) $$|x| > x$$ Well this basically tells that $$x$$ is negative. But still if we want to see how it works:
Two cases again:
$$x<0$$--> $$-x>x$$--> $$x<0$$.

$$x>0$$ --> $$x>x$$: never correct.

Only one range: $$x<0$$, but still insufficient to say whether $$-1<x<1$$. (For instance $$x$$ can be $$-0.5$$ or $$-10$$)

(1)+(2) $$x<0$$ (from 2) and $$-1<x<0$$ or $$x>1$$ (from 1), hence $$-1<x<0$$. Every $$x$$ from this range is definitely in the range $$-1<x<1$$. Sufficient.

Answer: C.

Oh grossly misread the Q as x<1. Thanks for the correction!
Intern
Joined: 26 Apr 2009
Posts: 1
Location: Vietnam
Schools: HBS, LBS, NUS
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

03 Nov 2009, 20:18
Bunuel, Gmat community's happy to got you.
Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 25

Kudos [?]: 434 [1] , given: 11

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

16 Jan 2013, 23:40
1
This post received
KUDOS
gmatforce wrote:
If x is not equal to 0, is |x| less than 1?
(1) x/|x| < x
(2) |x| > x

This is my most feared question type because it requires you to try out values but practice truly reduces that anxiety...

1.
Test x=2: 1 < 2 (This works for the equation but |x| is not less than 1) NO!
Test x=-1/4: -1 < -1/4 (This works for the equation and |x| is less than 1) YES!
INSUFFICIENT.

2. |x| > x
This means x is negative value.
x = -1: |x| is not less than 1 NO!
x = -1/4: |x| is less than 1 YES!
INSUFFICIENT!

Together: We only test (-) values with x/|x| < x
x=-1: No!
x=-1/4: Yes!

So the only valid solution for x/|x| < x that is negative is a fraction.
Fractions are |x| less than 1. YES!

Answer: C
_________________

Impossible is nothing to God.

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13542
Followers: 578

Kudos [?]: 163 [0], given: 0

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

05 Feb 2014, 12:55
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 20 May 2015
Posts: 1
Followers: 1

Kudos [?]: 0 [0], given: 0

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

07 Jun 2015, 13:22
Definitely appears like C to me.
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 8339
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Followers: 382

Kudos [?]: 2474 [0], given: 164

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x [#permalink]

### Show Tags

07 Jun 2015, 15:19
Hi All,

This DS question is built around some interesting Number Properties and patterns. If you can spot those patterns, then solving this problem should take considerably less time. This also looks like a question that can be beaten by TESTing VALUES.

We're told that X CANNOT = 0. We're asked if |X| < 1. This is a YES/NO question.

Fact 1: X/|X| < X

Before TESTing VALUES, I want to note a pattern in this inequality:

X/|X| will either equal 1 (if X is positive) OR -1 (if X is negative). This will save us some time when it comes to TESTing VALUES, since there are many values of X that will NOT fit this information.

If X = 2, then the answer to the question is NO.

X cannot be 1, any positive fraction, 0, or any negative integer…..

So what's left to TEST….?

If X = -1/2, then the answer to the question is YES.
Fact 1 is INSUFFICIENT

Fact 2: |X| > X

This tells us that X CANNOT be positive or 0.

If X = -1, then the answer to the question is NO.
If X = -1/2, then the answer to the question is YES.
Fact 2 is INSUFFICIENT

Combined, we have deal with the "overlapping restrictions" that we noted in the two Facts:
X cannot be….anything positive, 0, or any negative integer.
X can ONLY BE negative fractions between 0 and -1.
ALL of those answers (e.g. -1/2, -.4, etc.) lead to a YES answer.
Combined SUFFICIENT.

Final Answer:
[Reveal] Spoiler:
C

GMAT assassins aren't born, they're made,
Rich
_________________

# Rich Cohen

Co-Founder & GMAT Assassin

# Special Offer: Save \$75 + GMAT Club Tests

60-point improvement guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x| < x   [#permalink] 07 Jun 2015, 15:19
Similar topics Replies Last post
Similar
Topics:
24 If x is not equal to 0, is |x| less than 1? 14 06 May 2010, 03:20
24 If x is not equal to 0, is |x| less than 1? 15 06 Jan 2010, 12:31
182 If x is not equal to 0, is |x| less than 1? (1) x/|x|< x 93 01 Nov 2009, 08:25
1 If x is not equal to 0, is |x| less than 1? (1) x/|x| < x 3 10 Sep 2009, 03:32
9 If x is not equal to 0, is |x| less than 1? (1) x/|x|< x 10 07 Aug 2009, 14:19
Display posts from previous: Sort by

# If x is not equal to 0, is |x| less than 1? (1) x/|x| < x

 post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.