Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Oct 2014, 11:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x is positive, which of the following could be correct

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
5 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 07 Feb 2008
Posts: 315
Followers: 1

Kudos [?]: 48 [5] , given: 1

If x is positive, which of the following could be correct [#permalink] New post 03 Oct 2008, 13:37
5
This post received
KUDOS
14
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

35% (02:01) correct 65% (01:01) wrong based on 1251 sessions
If x is positive, which of the following could be correct ordering of \frac{1}{x}, 2x, and x^2?

(I) x^2 < 2x < \frac{1}{x}
(II) x^2 < \frac{1}{x} < 2x
(III) 2x < x^2 < \frac{1}{x}

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III
[Reveal] Spoiler: OA

Last edited by Bunuel on 07 Feb 2012, 13:17, edited 4 times in total.
Added the OA
2 KUDOS received
Manager
Manager
avatar
Joined: 30 Sep 2008
Posts: 113
Followers: 1

Kudos [?]: 9 [2] , given: 0

Re: If X is positive [#permalink] New post 04 Oct 2008, 22:18
2
This post received
KUDOS
Vavali wrote:
If x is positive, which of the following could be correct ordering of 1/x, 2x, and x^2?

(I) X^2 < 2x < 1/x
(II) x^2 < 1/x < 2x
(III) 2x < x^2 < 1/x

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III


could be correct ordering

So if we can find any example that satisfy the inequation, that statement will be correct

(I) x = 0.1 => 0.01 < 0.2 < 10
(II) x= 1/2 => 1/4 < 1/2 < 1

(III)
2x < x^2 <=> x ( 2 -x) < 0, x > 0 then x > 2

with x > 2 ==> x^2 < 1/x <=> x^3 < 1 <=> x < 1

So (III) can't happen

The answer is D
Manager
Manager
avatar
Joined: 10 Aug 2008
Posts: 76
Followers: 1

Kudos [?]: 13 [0], given: 0

Re: If X is positive [#permalink] New post 04 Oct 2008, 23:57
X is +ve , means x can be < 1 or > 1 .

For x < 1
Fisrt & second relations valid for diff values of x

For x > 1 none of the euation valids.

So answer is D.
1 KUDOS received
SVP
SVP
avatar
Joined: 17 Jun 2008
Posts: 1578
Followers: 12

Kudos [?]: 187 [1] , given: 0

Re: If X is positive [#permalink] New post 05 Oct 2008, 12:22
1
This post received
KUDOS
1
This post was
BOOKMARKED
Vavali wrote:
I still dont get why D is the answer. There is a flaw in your reasoning for statement II

if x = 1/2, then 1/1/2 = 2 which is greater than 2(1/2)

can someone please use figures (fractions or decimals) to demonstrate this. Thanks


x^2 < 1/x < 2x....If I translate this into two parts, it tell me that x^3 < 1 and 2x^2 > 1...that means, x < 1 and x > 1/1.414 That means approximately, x should be between 0.7 and 1.

Take a value of x = 0.9. Here, x^2 = 0.81, 1/x = 10/9 and 2x = 1.8 and these values satisfy the inequality.
Expert Post
12 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3616

Kudos [?]: 28966 [12] , given: 2874

Re: If X is positive [#permalink] New post 24 Jan 2010, 00:47
12
This post received
KUDOS
Expert's post
8
This post was
BOOKMARKED
gautamsubrahmanyam wrote:
I am not sure how the OA is D

when x=1/2 then 1/x is 2 ,2x is 1 and x^2 is 1/2 ,this satisfies (I) x^2<2x<1/x

when x =3 then 1/x is 1/3, 2x is 6 and x^2 is 9 ,this does not satisfy (II)

when x = 1/10 then 1/x is 10 , 2x is 1/5 and x^2 is 1/100,this again does not satify (II)

Even -ve numbers dont seem to work

when x=-3 then 1/x is -1/3 ,2x is -6 and X^2=9,this does not satisfy (II)
x=-1/3 then 1/x is -3 ,2x is -2/3 and x^2=-1/9,this does not satisfy (II)

Can any one give an example which satisfies option (II)


7. If x is positive, which of the following could be the correct ordering of 1/x,2x and x^2 ?
I. x^2<2x<1/x
II. x^2<1/x<2x
III. 2x<x^2<1/x

(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III

First note that we are asked "which of the following COULD be the correct ordering" not MUST be.
Basically we should determine relationship between x, \frac{1}{x} and x^2 in three areas: 0<1<2<.

x>2

1<x<2

0<x<1

When x>2 --> x^2 is the greatest and no option is offering this, so we know that x<2.
If 1<x<2 --> 2x is greatest then comes x^2 and no option is offering this.

So, we are left with 0<x<1:
In this case x^2 is least value, so we are left with:

I. x^2<2x<\frac{1}{x} --> can 2x<\frac{1}{x}? Can \frac{2x^2-1}{x}<0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

II. x^2<\frac{1}{x}<2x --> can \frac{1}{x}<2x? The same here \frac{2x^2-1}{x}>0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

Answer: D.

Second condition: x^2<\frac{1}{x}<2x

The question is which of the following COULD be the correct ordering not MUST be.

Put 0.9 --> x^2=0.81, \frac{1}{x}=1.11, 2x=1.8 --> 0.81<1.11<1.8. Hence this COULD be the correct ordering.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 04 Dec 2009
Posts: 24
Followers: 0

Kudos [?]: 8 [0], given: 13

Re: If X is positive [#permalink] New post 24 Jan 2010, 02:29
Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure how the OA is D

when x=1/2 then 1/x is 2 ,2x is 1 and x^2 is 1/2 ,this satisfies (I) x^2<2x<1/x

when x =3 then 1/x is 1/3, 2x is 6 and x^2 is 9 ,this does not satisfy (II)

when x = 1/10 then 1/x is 10 , 2x is 1/5 and x^2 is 1/100,this again does not satify (II)

Even -ve numbers dont seem to work

when x=-3 then 1/x is -1/3 ,2x is -6 and X^2=9,this does not satisfy (II)
x=-1/3 then 1/x is -3 ,2x is -2/3 and x^2=-1/9,this does not satisfy (II)

Can any one give an example which satisfies option (II)


7. If x is positive, which of the following could be the correct ordering of 1/x,2x and x^2 ?
I. x^2<2x<1/x
II. x^2<1/x<2x
III. 2x<x^2<1/x

(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III

First note that we are asked "which of the following COULD be the correct ordering" not MUST be.
Basically we should determine relationship between x, \frac{1}{x} and x^2 in three areas: 0<1<2<.

x>2

1<x<2

0<x<1

When x>2 --> x^2 is the greatest and no option is offering this, so we know that x<2.
If 1<x<2 --> 2x is greatest then comes x^2 and no option is offering this.

So, we are left with 0<x<1:
In this case x^2 is least value, so we are left with:

I. x^2<2x<\frac{1}{x} --> can 2x<\frac{1}{x}? Can \frac{2x^2-1}{x}<0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

II. x^2<\frac{1}{x}<2x --> can \frac{1}{x}<2x? The same here \frac{2x^2-1}{x}>0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

Answer: D.

Second condition: x^2<\frac{1}{x}<2x

The question is which of the following COULD be the correct ordering not MUST be.

Put 0.9 --> x^2=0.81, \frac{1}{x}=1.11, 2x=1.8 --> 0.81<1.11<1.8. Hence this COULD be the correct ordering.

Hope it's clear.



Thanks a lot.This really helps

Regards,
Gautam
1 KUDOS received
Manager
Manager
avatar
Joined: 26 May 2005
Posts: 210
Followers: 2

Kudos [?]: 71 [1] , given: 1

Re: If X is positive [#permalink] New post 04 Feb 2010, 17:47
1
This post received
KUDOS
zaarathelab wrote:
Still not very clear.

I marked I only in Gmatprep by figuring out that x lies between 0 and 1. But how does one use mathematic logic to try out the value 0.9 since plugging 0.9 and 0.5 each gives different results


7. If x is positive, which of the following could be the correct ordering of 1/x,2x and x^2 ?
I. x^2<2x<1/x
II. x^2<1/x<2x
III. 2x<x^2<1/x

In all the expression the common expression is x^2 < 1/x which is possible when 0<x<1
Now take expression x^2<2x
x^2-2x < 0 which is possible if x< 0 & x > 2 OR x >0 and x<2 .. so using the above expression 0<x<1 this expression also could be true.
now take expression x^2>2x which is possible if x<0 & x<2 OR x>0 & x>2 .. this doesnt fall under the condition of 0<x<1 .. so this expression could not be true.. III is out for this case alone
now take expression 2x<1/x
x^2 < 1/2 .. the range of values of x is a subset of the range 0<x<1 .. so this expression could be true for some values of x. I can be the correct ordering
now take expression 1/x<2x
x^2>1/2 .. the range of values of x has some values in the range 0<x<1 .. so this expression could be true for some vaues of x. II can be the correct ordering.

D
Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3616

Kudos [?]: 28966 [7] , given: 2874

Re: If X is positive [#permalink] New post 18 Apr 2010, 09:45
7
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
ykaiim wrote:
IMO B.
for 0<x<1, only statement I holds.
Brunuel, if u put x=1/2:
II. II. x^2<1/x<2x >>>>> will not hold true.
x^2 = 1/4, 1/x=2 and 2x=1 then this expression will not hold.
1/4<2<1 [Incorrect]

If x=1/9 then:
x^2=1/81, 1/x=9 and 2x=2/9
1/81<9<2/9 [Incorrect]

Let's check the III option for above values:
III. 2x<x^2<1/x
For x=1/2: 1<1/4<2 [Incorrect]
For x=1/9: 2/9<1/81<9 [Incorrect]

So, B should be the correct answer. Please check.


OA IS D.

Algebraic approach is given in my solution. Here is number picking:

I. x^2<2x<\frac{1}{x} --> x=\frac{1}{2} --> x^2=\frac{1}{4}, 2x=1, \frac{1}{x}=2 --> \frac{1}{4}<1<2. Hence this COULD be the correct ordering.

II. x^2<\frac{1}{x}<2x --> x=0.9 --> x^2=0.81, \frac{1}{x}=1.11, 2x=1.8 --> 0.81<1.11<1.8. Hence this COULD be the correct ordering.

III. 2x<x^2<\frac{1}{x} --> x^2 to be more than 2x, x must be more than 2 (for positive x-es). But if x>2, then \frac{1}{x} is the least value from these three and can not be more than 2x and x^2. So III can not be true.

Thus I and II could be correct ordering and III can not.

Answer: D.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 23 Apr 2010
Posts: 140
Location: Tx
Schools: NYU,UCLA,BOOTH,STANFORD
Followers: 1

Kudos [?]: 12 [0], given: 36

Re: If X is positive [#permalink] New post 03 Sep 2010, 06:28
For the 1

Pick any number 0<x<1 it is correct

For the 2

pick one number like 1/2 you will see that it is not correcy but dont rush pick another number which close to 1 but smaller then one like 9/10 and tried

you will see it is right.

so the answer is D

with that kind of guestions pick one less then 1/2 and greater then 1/2 less then 1.
_________________

This is not finished here...Watch me.....

Intern
Intern
avatar
Joined: 17 Dec 2009
Posts: 21
Followers: 0

Kudos [?]: 1 [0], given: 0

Re: If X is positive [#permalink] New post 03 Sep 2010, 06:44
As we can see that question used term "COULD", so even if any of the choice satisfy the requirement it will be an answer.
Now let look at the choices:

Choice I: Just put x=0.5, we can see that it satisfy the condition
Choice II: Put x=2, we can see that it also satisfy the condition
Choice III: For any value of x, it does not satisfy the condition.

So we can easily figure out that the answer is D.

Lemme me know if any one have any question on this.
Manager
Manager
avatar
Joined: 16 Jun 2010
Posts: 187
Followers: 2

Kudos [?]: 32 [0], given: 5

Re: If X is positive [#permalink] New post 03 Oct 2010, 13:28
Bunuel wrote:
So, we are left with 0<x<1:
In this case x^2 is least value, so we are left with:

I. x^2<2x<\frac{1}{x} --> can 2x<\frac{1}{x}? Can \frac{2x^2-1}{x}<0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

II. x^2<\frac{1}{x}<2x --> can \frac{1}{x}<2x? The same here \frac{2x^2-1}{x}>0, the expression 2x^2-1 can be negative or positive for 0<x<1.


Great explanation Bunuel, but for curiosity purpose, as I understand 2x^2-1 should be negative for this equation \frac{2x^2-1}{x}<0 to be true. However if I algebraically find the values for which 2x^2-1 is negative, then on plugging those values in x^2<\frac{1}{x}<2x I do not find that the equation satisfies. Instead it is the value for which 2x^2-1 is positive, that I find the end quation satifies .... why is that ?
_________________

Please give me kudos, if you like the above post.
Thanks.

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3616

Kudos [?]: 28966 [0], given: 2874

Re: If X is positive [#permalink] New post 03 Oct 2010, 13:47
Expert's post
devashish wrote:
Bunuel wrote:
So, we are left with 0<x<1:
In this case x^2 is least value, so we are left with:

I. x^2<2x<\frac{1}{x} --> can 2x<\frac{1}{x}? Can \frac{2x^2-1}{x}<0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

II. x^2<\frac{1}{x}<2x --> can \frac{1}{x}<2x? The same here \frac{2x^2-1}{x}>0, the expression 2x^2-1 can be negative or positive for 0<x<1.


Great explanation Bunuel, but for curiosity purpose, as I understand 2x^2-1 should be negative for this equation \frac{2x^2-1}{x}<0 to be true. However if I algebraically find the values for which 2x^2-1 is negative, then on plugging those values in x^2<\frac{1}{x}<2x I do not find that the equation satisfies. Instead it is the value for which 2x^2-1 is positive, that I find the end quation satifies .... why is that ?


You are mixing I and II. If you find the values of x from the range 0<x<1 for which 2x^2-1 is negative then x^2<2x<\frac{1}{x} will hold true (not x^2<\frac{1}{x}<2x).

Below is number plugging method:

I. x^2<2x<\frac{1}{x} --> x=\frac{1}{2} --> x^2=\frac{1}{4}, 2x=1, \frac{1}{x}=2 --> \frac{1}{4}<1<2. Hence this COULD be the correct ordering.

II. x^2<\frac{1}{x}<2x --> x=0.9 --> x^2=0.81, \frac{1}{x}=1.11, 2x=1.8 --> 0.81<1.11<1.8. Hence this COULD be the correct ordering.

III. 2x<x^2<\frac{1}{x} --> x^2 to be more than 2x, x must be more than 2 (for positive x-es). But if x>2, then \frac{1}{x} is the least value from these three and can not be more than 2x and x^2. So III can not be true.

Thus I and II could be correct ordering and III can not.

Answer: D.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Status: Meh, I can't take the GMAT before 2017.
Joined: 20 Aug 2011
Posts: 152
Followers: 3

Kudos [?]: 67 [0], given: 0

Re: If X is positive [#permalink] New post 24 Oct 2011, 17:15
ammulujnt wrote:
A is correct ans check substituting x=3 and x=0.1 if x=3 then x2>2x and if x=0.1 then x2<2x so its no way possible to decide this inequality


If x = 0.9, then x^2 < 1/x < 2x (so 2 is possible)

Answer is D.

With "could" wording, look only for scenarios that work in at least one circumstance rather than in all circumstances.
1 KUDOS received
Intern
Intern
avatar
Status: single
Joined: 16 Oct 2011
Posts: 6
Location: France, Metropolitan
Concentration: Marketing, Strategy
Schools: Insead '13 (A)
GMAT 1: 650 Q45 V34
GMAT 2: 660 Q43 V38
GPA: 3.5
WE: Supply Chain Management (Energy and Utilities)
Followers: 0

Kudos [?]: 7 [1] , given: 1

Re: If X is positive [#permalink] New post 26 Dec 2011, 10:03
1
This post received
KUDOS
IMO the clearest way to solve the problem is to plot the three curves / line:
- x^2 is a parabola tangent to the origin and passes through point (1,1) and (2,4)
- 1/x is the hyperbola tangent to the x-axis and the y-axis that passes through (1,1)
- 2x is the line that passes through the origin and (1,2)

The intersections among the three curves define the 4 possible cases:
for x<1/\sqrt{2}: x^2 < 2x < 1/x
for 1/\sqrt{2}<x<1: x^2 < 1/x < 2x
for 1<x<2: 1/x < x^2 < 2x
for x>2: 1/x < 2x < x^2

It's much easier when you draw the three curves and notice the intersection points (but don't know at this point how to include an image). It did not occur to me to draw them during the test and mistankenly chose answer B. With retrospect, the only way I could have figured out the four zones was by drawing.

Hope this helps :)
9 KUDOS received
Intern
Intern
User avatar
Joined: 03 Jan 2011
Posts: 44
Schools: McCombs, ISB, Insead, LBS
WE 1: 1.5
WE 2: 5.5
Followers: 1

Kudos [?]: 23 [9] , given: 94

Re: If X is positive [#permalink] New post 07 Feb 2012, 12:51
9
This post received
KUDOS
Copied from an other forum. Thought it might help someone. This is a great explanation...

--------------------------------------------------

Each one of these gives you two inequalities. You know that x is positive, so you don't need to worry about the sign changing direction.

(1) x^2<2x<1/x

This means that x^2<2x so divide by x to get x<2. The second one tells you that 2x<1/x which simplifies to x < 1/sqrt(2). These can obviously both be satisfied at the same time, so (1) works.

(2) x^2<1/x<2x

This means that x^2<1/x which gives x^3<1, or x<1. The second half gives you 1/x<2x or 1<2(x^2) or x>1/sqrt(2). So any number that satisfies 1/sqrt(2)<x<1 will work.

(3) 2x<x^2<1/x. The first part gives 2x<x^2 or x>2. The second half gives x^2<1/x or x^3<1 or x<1. Since the regions x>2 and x<1 do not overlap, (3) can not be satisfied.


The Answer choice is (4), 1 and 2 only.
_________________

You can see from the number of "Kudos Given" on my profile that I am generous while giving Kudos. Is it too much to ask for a similar favor???

Expert Post
4 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1157

Kudos [?]: 5381 [4] , given: 165

Re: If x is positive, which of the following could be correct [#permalink] New post 07 Feb 2012, 22:49
4
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Vavali wrote:
If x is positive, which of the following could be correct ordering of \frac{1}{x}, 2x, and x^2?

(I) x^2 < 2x < \frac{1}{x}
(II) x^2 < \frac{1}{x} < 2x
(III) 2x < x^2 < \frac{1}{x}

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III


Let's look at this question logically. There will be some key takeaways here so don't focus on the question and the (long) solution. Focus on the logic.

First of all, we are just dealing with positives so life is simpler.
To compare two terms e.g. x^2 and 2x, we should focus on the points where they are equal. x^2 = 2x holds when x = 2.
When x < 2, x^2 < 2x
When x > 2, x^2 > 2x

Similarly 1/x = x^2 when x = 1
When x < 1, 1/x > x^2.
When x > 1, 1/x < x^2

Going on, 1/x = 2x when x = 1/\sqrt{2}
When x < 1/\sqrt{2}, 1/x > 2x
When x > 1/\sqrt{2}, 1/x < 2x

So now you know that:
If x < 1/\sqrt{2},
1/x > 2x, 1/x > x^2 and x^2 < 2x
So x^2 < 2x < 1/x is possible.

If 1/\sqrt{2} < x < 1
1/x < 2x, 1/x > x^2
So x^2 < 1/x < 2x is possible.

If 1 < x < 2
1/x < 2x, 1/x < x^2, x^2 < 2x
So 1/x < x^2 < 2x is possible.

If x > 2
1/x < 2x, 1/x < x^2, x^2 > 2x
So 1/x < 2x < x^2 is possible.

For no positive values of x is the third relation possible.


*Edited
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 157 [0], given: 136

Re: If x is positive, which of the following could be correct [#permalink] New post 27 Feb 2012, 01:52
Hi Bunnel,

Could you please provide a reasoning to the below text... how did you find the range...Pls help

Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure how the OA is D

when x=1/2 then 1/x is 2 ,2x is 1 and x^2 is 1/2 ,this satisfies (I) x^2<2x<1/x

when x =3 then 1/x is 1/3, 2x is 6 and x^2 is 9 ,this does not satisfy (II)

when x = 1/10 then 1/x is 10 , 2x is 1/5 and x^2 is 1/100,this again does not satify (II)

Even -ve numbers dont seem to work

when x=-3 then 1/x is -1/3 ,2x is -6 and X^2=9,this does not satisfy (II)
x=-1/3 then 1/x is -3 ,2x is -2/3 and x^2=-1/9,this does not satisfy (II)

Can any one give an example which satisfies option (II)


7. If x is positive, which of the following could be the correct ordering of 1/x,2x and x^2 ?
I. x^2<2x<1/x
II. x^2<1/x<2x
III. 2x<x^2<1/x

(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III

First note that we are asked "which of the following COULD be the correct ordering" not MUST be.
Basically we should determine relationship between x, \frac{1}{x} and x^2 in three areas: 0<1<2<.

x>2

1<x<2

0<x<1


When x>2 --> x^2 is the greatest and no option is offering this, so we know that x<2.
If 1<x<2 --> 2x is greatest then comes x^2 and no option is offering this.

So, we are left with 0<x<1:
In this case x^2 is least value, so we are left with:

I. x^2<2x<\frac{1}{x} --> can 2x<\frac{1}{x}? Can \frac{2x^2-1}{x}<0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

II. x^2<\frac{1}{x}<2x --> can \frac{1}{x}<2x? The same here \frac{2x^2-1}{x}>0, the expression 2x^2-1 can be negative or positive for 0<x<1. (You can check it either algebraically or by picking numbers)

Answer: D.

Second condition: x^2<\frac{1}{x}<2x

The question is which of the following COULD be the correct ordering not MUST be.

Put 0.9 --> x^2=0.81, \frac{1}{x}=1.11, 2x=1.8 --> 0.81<1.11<1.8. Hence this COULD be the correct ordering.

Hope it's clear.
[quote="Bunuel"][quote="gautamsubrahmanyam"]I am not sure how the OA is D
_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3616

Kudos [?]: 28966 [0], given: 2874

Re: If x is positive, which of the following could be correct [#permalink] New post 27 Feb 2012, 02:07
Expert's post
imhimanshu wrote:
Hi Bunnel,

Could you please provide a reasoning to the below text... how did you find the range...Pls help


The reasoning is that in these ranges x (2x), 1/x and x^2 are ordered differently:

For x>2 --> x^2 has the largest value. Since no option offers this we know that x cannot be more that 2;
For 1<x<2 --> 2x has the largest value, then comes x^2. Since no option offers this we know that x cannot be from this range either;

So, we are left with last range: 0<x<1. In this case x^2 has the least value. Options, I and II offer this, so we should concentrate on them and test the values of x from 0 to 1.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

2 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 25 Nov 2011
Posts: 261
Location: India
Concentration: Technology, General Management
GPA: 3.95
WE: Information Technology (Computer Software)
Followers: 3

Kudos [?]: 42 [2] , given: 20

Re: If x is positive, which of the following could be correct [#permalink] New post 27 Feb 2012, 02:23
2
This post received
KUDOS
@imhimanshu

In this kind of questions, it is best to check with numbers. Also, when fractions are involved in the question, test with 3 values: < 0.5; = 0.5 ; > 0.5

This distribution definitely helps you.
_________________

-------------------------
-Aravind Chembeti

Manager
Manager
avatar
Joined: 09 Feb 2012
Posts: 72
Location: India
Concentration: Marketing, Strategy
GMAT 1: 640 Q48 V31
GPA: 3.45
WE: Marketing (Pharmaceuticals and Biotech)
Followers: 1

Kudos [?]: 29 [0], given: 41

Re: If x is positive, which of the following could be correct [#permalink] New post 27 Feb 2012, 07:23
The answer would be D

(I) this is clear and is easily deciphered ...

but for (II) x^2 < 1/x < 2x

This means that x^2<1/x which gives x^3<1, or x<1. The second half gives you 1/x<2x or 1<2(x^2) or x>1/sqrt(2). So any number that satisfies 1/sqrt(2)<x<1.. hence (II) COULD also be true for some values..
Re: If x is positive, which of the following could be correct   [#permalink] 27 Feb 2012, 07:23
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic If x is positive, which of the following could be the butterfly 11 01 Nov 2010, 16:28
If x is positive, which of the following could be correct krishan 6 02 Jan 2009, 02:19
If x is positive which of the following could be the correct mba9now 10 12 Aug 2008, 09:45
13 If x is positive, which of the following could be the dishant007 1 09 Aug 2008, 17:53
Experts publish their posts in the topic If x is positive which of the following could be the correct Sam Kana 14 03 Nov 2006, 16:44
Display posts from previous: Sort by

If x is positive, which of the following could be correct

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 40 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.