Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
30 May 2013, 15:40

1

This post received KUDOS

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

55% (hard)

Question Stats:

60% (02:23) correct
40% (01:31) wrong based on 632 sessions

I get the mechanics of flipping the signs when y is negative, but I guess I don't understand the logic.

If I take an absolute value of a number (always positive) then subtract from it an absolute value of a smaller number, which is negative how does that end up being X+Y? Are we looking just for the values of x and y, as opposed to the values of |x|-|y|?

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
30 May 2013, 17:07

If |x| - |y| = |x+y| and xy does not equal to 0, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y > 0 D. xy > 0 E. xy < 0

xy not equal to 0 means neither of them is zero , the given equation can't hold if both are positive because in that case you can remove the mod sign and it will give you y=0 which is not possible

if both x,y are positive ,x - y = x + y

Same goes for x and y both being negative .

However, one of them can be neg and one positive , x=-2 and y = 1 satisfies the equation and hence ans is E

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
30 May 2013, 22:47

Expert's post

WholeLottaLove wrote:

Yes, but why does -2|xy| = 2xy?

and is this example posted by Bunuel... 2. ----y--0------x--: y<0<x --> |x|-|y|=x+y and |x+y|=x+y --> x+y={x+y}. Correct.

How does |x| - |y| = x+y? wouldn't it be x-y?

|x|-|y| will always be (x-y) ONLY for non-negative values of BOTH x and y. If even one of them is negative, then |x|-|y| will never (x-y). It will be either -x-y (In case x is negative and y positive) OR x-(-y)-->x+y(x positive and y negative).

When y is negative, as |y| is always a non-negative entity, thus we can't write |y| = y. Thus, we attach a negative sign to 'y' to make the entire term (-y) as positive.

Also, even though (x+y) does look like addition of two numbers, it actually isn't, as y is negative. It will be easier to understand this concept if you use valid nos. _________________

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
31 May 2013, 00:12

WholeLottaLove wrote:

I get the mechanics of flipping the signs when y is negative, but I guess I don't understand the logic.

If I take an absolute value of a number (always positive) then subtract from it an absolute value of a smaller number, which is negative how does that end up being X+Y? Are we looking just for the values of x and y, as opposed to the values of |x|-|y|?

----y--0------x--: y<0<x --> |x|-|y|=x+y and |x+y|=x+y --> x+y={x+y}. Correct.

x is greater than 0 => \(|x|=x\) y is less than 0 => \(|y|=-y\). You take -y from |y| because y<0 So \(|x|-|y|=x-(-y)=x+y\)

This is why \(|x|-|y|\) becomes \(x+y\). If you want you can try with real numbers, example: \(x=5\)>0 and \(y=-3\)<0 \(|x|-|y|=|5|-|-3|=5-3=2\) \(|x|-|y|=x+y=5-3=2\) _________________

It is beyond a doubt that all our knowledge that begins with experience.

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
31 May 2013, 02:05

Expert's post

WholeLottaLove wrote:

How does x^2-2|xy|+y^2 become x^2+2xy+y^2? What happened to the -2|xy|? Even if xy were negative |xy| will be positive and pos. * neg (In this case, the -2) = negative, right?

Step 2: cancel x^2+y^2 in both sides to get \(-2|xy|=2xy\)

Step 3: reduce by -2 to get \(|xy|=-xy\)

Step 4: apply absolute value property, which says that the absolute value is always non-negative --> \(LHS=|xy|\) is always non negative, thus \(|xy|\geq{0}\), therefore RHS is also non-negative: \(|xy|=-xy\geq{0}\) --> \(-xy\geq{0}\).

Step 5: multiply by -1 and flip the sign of the inequality --> \(xy\leq{0}\)

Step 6: apply info given in the stem --> since given that \(xy\neq{0}\), then \(xy<0\).

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
10 Jul 2013, 09:10

If |x| - |y| = |x+y| and xy does not equal to 0, which of the following must be true?

|x| - |y| = |x+y| |x|-|y| = an absolute value which means that |x|-|y| is positive. Therefore, we can square both sides. (|x| - |y|)^2 = (|x+y|)^2 (|x| - |y|)*(|x| - |y|) = (|x+y|)*(|x+y|) x^2-2(xy|) + y^2 = x^2+2xy+y^2 -2|xy|=2xy (I take it we cannot add -2|xy| to 2xy?) |xy|=-xy -xy must be positive as it is equal to an absolute value. For that to be possible: |xy|=-xy |xy|=-(-xy) |xy|=xy xy=xy

So, xy < 0

(E)

A. x-y > 0 B. x-y < 0 C. x+y > 0 D. xy > 0 E. xy < 0

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
22 Jul 2013, 22:44

its better testing with some smart numbers.obviously will take some seconds more but worth it. As per this question there can be four cases: 1 )+ + 2)+ - 3)- + 4)- -. Check for the validity and you will see that choices 2 and 3 only suffice.So the product is going to be <0 with either case.Hence E

Answer which you 'll derive using smart numbers will be beyond doubt and perfect.Get used to smart numbers in areas like absolute values,percentages,ratios.They help a lot )

Re: PS - Number system [#permalink]
23 Apr 2014, 04:51

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

Could you please explain following line as above defined in solution

Re: PS - Number system [#permalink]
23 Apr 2014, 06:15

Expert's post

PathFinder007 wrote:

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

Could you please explain following line as above defined in solution

note that (|x+y|)^2=(x+y)^2

Thanks.

Generally, \(|x|^2=x^2\). For example, \(|-2|^2=4=2^2\) or \(|3|^2=9=3^2\). _________________

Re: PS - Number system [#permalink]
02 May 2014, 22:45

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

HI Bunnel,

3. --x------0--y----: x<0<y --> |x|-|y|=-x-y and |x+y|=-x-y --> -x-y={-x-y}

could you please clarify above statement. here y is positive so |x+y| should be -x+y

Re: PS - Number system [#permalink]
03 May 2014, 03:22

Expert's post

PathFinder007 wrote:

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\), but as given that \(xy\neq{0}\), then \(xy<0\).

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

HI Bunnel,

3. --x------0--y----: x<0<y --> |x|-|y|=-x-y and |x+y|=-x-y --> -x-y={-x-y}

could you please clarify above statement. here y is positive so |x+y| should be -x+y

Please clarify

Thanks.

y is positive but x is negative and x is further from zero than y, so x+y is negative hence |x+y|=-(x+y). For example, x=-5 and y=1 --> x+y=-4=negative. _________________

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
06 May 2014, 20:00

My Analysis : xy # 0 mean x and y might have either positive or negative Numbers ( Integers) Concepts : Absolute value , Modules My Steps : As xy # 0 , So x and y have either positive or negative numbers By Plugging x and y as positive numbers |x| - |y| = |x+y| the Equation never becomes Equal So One Number has to be Negative Ex : x = -6 , y = 3 |-6| - |3| = |-6 + 3| 6 - 3 = |-3 | 3 = 3 So xy = -6*3 = -18

Re: PS - Number system [#permalink]
18 Jun 2014, 05:57

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\)

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

Hi Bunuel ,

Can you please explain how \(|xy|=-xy\) --> \(xy\leq{0}\),

Re: PS - Number system [#permalink]
18 Jun 2014, 07:13

Expert's post

gauravsoni wrote:

Bunuel wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\)

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

Hi Bunuel ,

Can you please explain how \(|xy|=-xy\) --> \(xy\leq{0}\),

Absolute value properties:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

Re: If |x| - |y| = |x+y| and xy does not equal to 0, which of [#permalink]
18 Jun 2014, 11:41

Bunuel wrote:

gauravsoni wrote:

divakarbio7 wrote:

if lxl - lyl = lx+yl anf xy does , not equal to o, which of the following must be true?

A. x-y > 0 B. x-y < 0 C. x+y >0 D. xy>0 E. xy<0

\(|x|-|y|=|x+y|\) --> square both sides --> \((|x|-|y|)^2=(|x+y|)^2\) --> note that \((|x+y|)^2=(x+y)^2\) --> \((|x|-|y|)^2=(x+y)^2\) --> \(x^2-2|xy|+y^2=x^2+2xy+y^2\) --> \(|xy|=-xy\) --> \(xy\leq{0}\)

Answer: E.

Another way:

Right hand side, \(|x+y|\), is an absolute value, which is always non-negative, but as \(xy\neq{0}\), then in this case it's positive --> \(RHS=|x+y|>0\). So LHS must also be more than zero \(|x|-|y|>0\), or \(|x|>|y|\).

So we can have following 4 scenarios: 1. ------0--y----x--: \(0<y<x\) --> \(|x|-|y|=x-y\) and \(|x+y|=x+y\) --> \(x-y\neq{x+y}\). Not correct. 2. ----y--0------x--: \(y<0<x\) --> \(|x|-|y|=x+y\) and \(|x+y|=x+y\) --> \(x+y={x+y}\). Correct. 3. --x------0--y----: \(x<0<y\) --> \(|x|-|y|=-x-y\) and \(|x+y|=-x-y\) --> \(-x-y={-x-y}\). Correct. 4. --x----y--0------: \(x<y<0\) --> \(|x|-|y|=-x+y\) and \(|x+y|=-x-y\) --> \(-x+y\neq{-x-y}\). Not correct.

So we have that either \(y<0<x\) (case 2) or \(x<0<y\) (case 3) --> \(x\) and \(y\) have opposite signs --> \(xy<0\).

Answer: E.

Hope it helps.

Hi Bunuel ,

Can you please explain how \(|xy|=-xy\) --> \(xy\leq{0}\),

Absolute value properties:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

Hey, Last week I started a few new things in my life. That includes shifting from daily targets to weekly targets, 45 minutes of exercise including 15 minutes of yoga, making...

This week went in reviewing all the topics that I have covered in my previous study session. I reviewed all the notes that I have made and started reviewing the Quant...

I started running as a cross country team member since highshcool and what’s really awesome about running is that...you never get bored of it! I participated in...