Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
If y + | y | = 0, which of the following must be true? [#permalink]
21 Apr 2012, 21:23
3
This post received KUDOS
Expert's post
boomtangboy wrote:
If y + | y | = 0, which of the following must be true? (A) y > 0 (B) y≥0 (C) y < 0 (D) y≤0 (E) y = 0
Why is just E incorrect?
Absolute value properties: When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);
When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\);
So, \(y+|y|=0\) --> \(|y|=-y\), which means that \(y\leq{0}\).
Answer: D.
As for your doubt: question asks which of the following MUST be true, not COULD be true. Since all negative values of y satisfy \(|y|=-y\) then it's not necessarily true that \(y=0\).
Re: If y + | y | = 0, which of the following must be true? [#permalink]
08 May 2012, 09:03
Bunuel wrote:
boomtangboy wrote:
If y + | y | = 0, which of the following must be true? (A) y > 0 (B) y≥0 (C) y < 0 (D) y≤0 (E) y = 0
Why is just E incorrect?
Absolute value properties: When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|\leq{-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);
When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|\leq{some \ expression}\). For example: \(|5|=5\);
So, \(y+|y|=0\) --> \(|y|=-y\), which means that \(y\leq{0}\).
Answer: D.
As for your doubt: question asks which of the following MUST be true, not COULD be true. Since all negative values of y satisfy \(|y|=-y\) then it's not necessarily true that \(y=0\).
Hope it's clear.
Hi ,
Thanks for the clear and concise explaination.
Just wanted to clarify one thing.
In mods the two conditions I know are applied include; If x<0 or if x>=0. However in the above explaination you have used x<=0. Was that used for some particular reason or my concepts of absolute values are incorrect.
Re: If y + | y | = 0, which of the following must be true? [#permalink]
09 May 2012, 07:10
Bunuel wrote:
boomtangboy wrote:
If y + | y | = 0, which of the following must be true? (A) y > 0 (B) y≥0 (C) y < 0 (D) y≤0 (E) y = 0
Why is just E incorrect?
Absolute value properties: When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|\leq{-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);
When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|\leq{some \ expression}\). For example: \(|5|=5\);
So, \(y+|y|=0\) --> \(|y|=-y\), which means that \(y\leq{0}\).
Answer: D.
As for your doubt: question asks which of the following MUST be true, not COULD be true. Since all negative values of y satisfy \(|y|=-y\) then it's not necessarily true that \(y=0\).
Hope it's clear.
Hi Bunuel, why are we considering the case of y=0, as if y=0, then the expression |y|=-y makes no sense, because |0|=0. and there is no +0 or -0. Please explain. Thanks in advance.
Re: If y + | y | = 0, which of the following must be true? [#permalink]
09 May 2012, 07:26
Expert's post
piyushksharma wrote:
Bunuel wrote:
boomtangboy wrote:
If y + | y | = 0, which of the following must be true? (A) y > 0 (B) y≥0 (C) y < 0 (D) y≤0 (E) y = 0
Why is just E incorrect?
Absolute value properties: When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|\leq{-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);
When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|\leq{some \ expression}\). For example: \(|5|=5\);
So, \(y+|y|=0\) --> \(|y|=-y\), which means that \(y\leq{0}\).
Answer: D.
As for your doubt: question asks which of the following MUST be true, not COULD be true. Since all negative values of y satisfy \(|y|=-y\) then it's not necessarily true that \(y=0\).
Hope it's clear.
Hi Bunuel, why are we considering the case of y=0, as if y=0, then the expression |y|=-y makes no sense, because |0|=0. and there is no +0 or -0. Please explain. Thanks in advance.
Not, so. You can write |0|=-0 and there is nothing wrong in that. _________________
Re: If y + | y | = 0, which of the following must be true? [#permalink]
09 May 2012, 07:33
Bunuel wrote:
Not, so. You can write |0|=-0 and there is nothing wrong in that.
hm, absolute value of an integer means how far this integer is from zero. so, absolute value of zero iz zero, since zero is zero far from zero (sounds like a quote of Alice from Wonderland hehe) -0 looks weird to me, since zero is neither positive, nor negative, and has no sigh. But still, I wont claim that my way of thinking is right. I will believe to Bunuel )) amazing life, every day is a new discovery ) _________________
Happy are those who dream dreams and are ready to pay the price to make them come true
I am still on all gmat forums. msg me if you want to ask me smth
Re: If y + | y | = 0, which of the following must be true? [#permalink]
15 May 2012, 03:32
I have a question here.. if the the question was y + |y| = 2y , then can we say y>=0? given then 0+0 = 2(0). Please let me know in case I am doing something wrong. Thanks in advance.
Re: If y + | y | = 0, which of the following must be true? [#permalink]
15 May 2012, 03:45
Expert's post
pavanpuneet wrote:
I have a question here.. if the the question was y + |y| = 2y , then can we say y>=0? given then 0+0 = 2(0). Please let me know in case I am doing something wrong. Thanks in advance.
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...