Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Oct 2014, 06:19

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If you divide 7^131 by 5, which remainder do you get?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1739
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 14

Kudos [?]: 191 [0], given: 295

GMAT ToolKit User
Re: If you divide 7^131 by 5, which remainder do you get? [#permalink] New post 01 Apr 2014, 04:37
Actually in my sleep yesterday it occurred to me that something such as the following could be done.
Please advice is this method is not indeed flawed

Whenever we have 5 in the denominator we can multiply both numerator and denominator by 2 so we get 10 in the denominator and therefore we can just find the units digit in the numerator

It would be something like this

7^131/5 = 7^131*2/10

7 has cyclisity of 7,9,3,1 therefore units digit is 3*2=6 but since we multiplied by 2, then 3

Answer is thus 3

* Remember that the remainder of a number when divided by 2 is the units digit. Likewise, the remainder of a number when divided by 100 are the last two digits

Hope it makes sense
Cheers
J
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1152

Kudos [?]: 5359 [0], given: 165

Re: If you divide 7^131 by 5, which remainder do you get? [#permalink] New post 01 Apr 2014, 21:31
Expert's post
jlgdr wrote:
Actually in my sleep yesterday it occurred to me that something such as the following could be done.
Please advice is this method is not indeed flawed

Whenever we have 5 in the denominator we can multiply both numerator and denominator by 2 so we get 10 in the denominator and therefore we can just find the units digit in the numerator

It would be something like this

7^131/5 = 7^131*2/10

7 has cyclisity of 7,9,3,1 therefore units digit is 3*2=6 but since we multiplied by 2, then 3

Answer is thus 3

* Remember that the remainder of a number when divided by 2 is the units digit. Likewise, the remainder of a number when divided by 100 are the last two digits

Hope it makes sense
Cheers
J


Your method is correct but for this question. If you generalize it, it could be flawed. The reason is this: if there is a number with units digit as 6 (e.g. .......6), when you divide it by 2, the last digit could be 3 but it could also be 8. Here we know that we multiplied a power of 7 so the last digit CANNOT be 8 so your method is fine but be careful when you try to generalize it.

Also, you don't need to multiply by 2 to make the denominator 10. Even when the denominator is 5, the last digit is enough to give you the remainder. If the last digit is from 0 to 4, the remainder is the same as the last digit. If the last digit is from 5 to 9, remainder is (last digit - 5).
7^131 ends with 3 so remainder when divided by 5 must be 3.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 12 May 2013
Posts: 67
Followers: 1

Kudos [?]: 12 [0], given: 11

Re: question about remainders [#permalink] New post 29 Apr 2014, 10:36
Check this first: 218-if-x-and-y-are-positive-integers-what-is-the-remainder-109636.html#p875157

If you divide 7^131 by 5, which remainder do you get?
A. 0
B. 1
C. 2
D. 3
E. 4

Last digit of 7^(positive integer) repeats in blocks of 4: {7, 9, 3, 1} - {7, 9, 3, 1} - ... (cyclicity of 7 in power is 4).

As the remainder upon division 131 by 4 (cyclicity) is 3 then the last digit of 7^131 is the same as that of 7^3 so 3 (the third digit from the pattern {7, 9, 3, 1}). Now, any positive integer ending with 3 upon division by 5 yields the remainder of 3.

Answer: D.

Hope it's clear.[/quote]

bunuel, as per the theory in gmat club math book "When a smaller integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller
integer." i tried solving the above sum and got the correct answer just want to know whether the method is correct or not , as 3 is smaller than 5 so the remainder would be 3

thanks :)
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23371
Followers: 3607

Kudos [?]: 28764 [0], given: 2846

Re: question about remainders [#permalink] New post 30 Apr 2014, 06:41
Expert's post
adymehta29 wrote:

bunuel, as per the theory in gmat club math book "When a smaller integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller
integer." i tried solving the above sum and got the correct answer just want to know whether the method is correct or not , as 3 is smaller than 5 so the remainder would be 3

thanks :)


Yes, 3 divided by 5 gives the remainder o f 3. I don't understand the rest of your post though...
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1152

Kudos [?]: 5359 [1] , given: 165

Re: question about remainders [#permalink] New post 30 Apr 2014, 22:27
1
This post received
KUDOS
Expert's post
adymehta29 wrote:
Check this first: 218-if-x-and-y-are-positive-integers-what-is-the-remainder-109636.html#p875157

If you divide 7^131 by 5, which remainder do you get?
A. 0
B. 1
C. 2
D. 3
E. 4

Last digit of 7^(positive integer) repeats in blocks of 4: {7, 9, 3, 1} - {7, 9, 3, 1} - ... (cyclicity of 7 in power is 4).

As the remainder upon division 131 by 4 (cyclicity) is 3 then the last digit of 7^131 is the same as that of 7^3 so 3 (the third digit from the pattern {7, 9, 3, 1}). Now, any positive integer ending with 3 upon division by 5 yields the remainder of 3.

Answer: D.

Hope it's clear.

bunuel, as per the theory in gmat club math book "When a smaller integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller
integer." i tried solving the above sum and got the correct answer just want to know whether the method is correct or not , as 3 is smaller than 5 so the remainder would be 3

thanks :)


Hey Bunuel,

If you don't mind, I think I see the problem Ady is facing so I will take it up.

Note that the gmat club math book says "When a smaller integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller
integer."

So when 3 is divided by 5, remainder is 3. When 10 is divided by 39, remainder is 10 and so on...

But in this question, you have 7^{131} divided by 5. You find that 7^{131} ends in 3. This means it is a number which looks something like this:
7^{131} = 510320.....75683 (a huge number that ends in 3. Other than 3, I have used some random digits.)

So the remainder is 3 not because 3 is smaller than 5. The actual number is much much bigger than 5. For example, if you have 276543 divided by 5, will you say that the number is smaller than 5 and hence the remainder is 3? No. The remainder is 3 because the number ends in 3 and when you divide such a number by 5, you know that the number which is 3 steps before it i.e. 276540 in this case, is a multiple of 5 (every number ending in 0 or 5 is a multiple of 5). That is the reason that you will be left with 3 when you divide this number by 5.

Similarly, 4367 divided by 5 leaves remainder 2 because 4365 is divisible by 5 and so on...

The first part of this post discusses remainders in case of division by 5: http://www.veritasprep.com/blog/2014/03 ... emainders/
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
User avatar
Joined: 14 May 2014
Posts: 45
Followers: 0

Kudos [?]: 18 [0], given: 1

Re: If you divide 7^131 by 5, which remainder do you get? [#permalink] New post 21 May 2014, 06:19
If we raise the power of 7 by 2 , last digit will be 9 (7X7 = 49)
If we raise the power of 7 by 3, last digit will be 3 (7X7X7 = 343)
If we raise the power of 7 by 4 , last digit will be 1 (A9 X A9 = XYZ1; Here A is 49)
If we raise the power of 7 by multiple of 4 , last digit will be always 1 .

Now 131 = 4X32 + 3

Raising the power of 7 by 131 is equal to raising the power by 4X32 and then multiplying by 7^3

last digit of first term will be 1 and second term will be 3

Hence last digit of 7^131 will be 1X3 = 3

Since last digit is less than 5, if we divide the number by 5 we will get 3 as remainder ( If last digit is 5 or greater than 5 we have to subtract 5 from last digit to get the remainder)

Answer is D
_________________

Help me with Kudos if it helped you "

Mathematics is a thought process.

Manager
Manager
User avatar
Joined: 02 Jul 2012
Posts: 159
Location: India
GMAT Date: 10-31-2014
GPA: 2.3
WE: Consulting (Consulting)
Followers: 2

Kudos [?]: 40 [0], given: 77

CAT Tests
Re: If you divide 7^131 by 5, which remainder do you get? [#permalink] New post 20 Oct 2014, 01:25
If you divide 7^131 by 5, which remainder do you get?

a) 0
b) 1
c) 2
d) 3
e) 4

We can solve this problem using the two ways:

1. This method is limited to this question or any question which has 5 or 10 or their power in the denominator.

If I can know the last 2 digits of this, I can know what will be the remainder of 7^131 when divided by 5, by dividing the last 2 digits by 5.

To calculate the last two digits, we need to see the pattern of the digits -
7
49
43
01
07
49

The cyclicity is 4. Now dividing 131 by cliclicity to know the 2 digit number. The remainder is 3 thus the last 3 digits will be 03.

Now a number with last 2 digits as 03, will give remainder 3 when divided by 5.

Thus 3.

The second method is generic and will work with all the possible scenarios.

When 7 is divided by 5, the remainder is 2.
2 has a cyclicity of 4 with 131, we'll be left with 3.
2^3 = 8
when we divide this by 5, we get the remainder 3.

Thus Ans = 3 (D)
_________________

Give KUDOS if the post helps you... :-D

Re: If you divide 7^131 by 5, which remainder do you get?   [#permalink] 20 Oct 2014, 01:25
    Similar topics Author Replies Last post
Similar
Topics:
7 Experts publish their posts in the topic What is the remainder when you divide 2^200 by 7? g3kr 13 16 Oct 2012, 19:42
Which packages do you offer? metallicafan 0 06 May 2012, 15:06
4 Experts publish their posts in the topic What is the remainder when you divide 2^200 by 7? carcass 7 02 Oct 2011, 10:50
What is the remainder when 9^381 is divided by 5? How do you udribat 3 30 Oct 2008, 22:07
AND IF YOU DON'T GET IN WHAT WILL YOU DO OF YOUR LIFE? andrehaui 9 27 Apr 2007, 11:23
Display posts from previous: Sort by

If you divide 7^131 by 5, which remainder do you get?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 27 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.