If zy < xy < 0, is | x - z | + |x| = |z|? : GMAT Data Sufficiency (DS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

It is currently 09 Dec 2016, 04:37
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If zy < xy < 0, is | x - z | + |x| = |z|?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

5 KUDOS received
Intern
Intern
avatar
Joined: 11 Jul 2010
Posts: 35
Followers: 0

Kudos [?]: 40 [5] , given: 6

If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 17 Sep 2010, 11:10
5
This post received
KUDOS
27
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

46% (02:36) correct 54% (01:36) wrong based on 1016 sessions

HideShow timer Statistics

If zy < xy < 0, is | x - z | + |x| = |z|?

(1) z < x
(2) y > 0
[Reveal] Spoiler: OA
Expert Post
8 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 7076
Location: Pune, India
Followers: 2088

Kudos [?]: 13300 [8] , given: 222

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 20 Jun 2012, 04:05
8
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
rgtiwari wrote:
If zy < xy < 0, is | x - z | + |x| = |z|?

(1) z < x
(2) y > 0


You can solve such questions easily by re-stating '< 0' as 'negative' and '> 0' as 'positive'.

zy < xy < 0 implies both 'zy' and 'xy' are negative and zy is more negative i.e. has greater absolute value as compared to xy. Since y will be equal in both, z will have a greater absolute value as compared to x.

When will zy and xy both be negative? In 2 cases:
Case 1: When y is positive and z and x are both negative.
Case 2: When y is negative and z and x are both positive.

Question:
Is | x - z | + |x| = |z| ?
Is | x - z | = |z| - |x| ?
Is | z - x | = |z| - |x| ? (Since | x - z | = | z - x |)
We re-write the question only for better understanding.

Now think, when will | z - x | = |z| - |x| ? It happens when x and z have the same sign. In case both have the same sign, they get subtracted on both sides so you get the same answer. In case they have opposite signs, they get added on LHS and subtracted on RHS and hence the equality doesn't hold.

So if we can figure whether both x and z have the same sign, we can answer the question.

As we saw above, in both case 1 and case 2, x and z must have the same sign. This implies that the equality must hold and you don't actually need the statements to answer the question. You can answer it without the statements (this shouldn't happen in actual GMAT).
Hence answer must be (D).
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Expert Post
6 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35932
Followers: 6857

Kudos [?]: 90078 [6] , given: 10413

If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 17 Sep 2010, 14:58
6
This post received
KUDOS
Expert's post
17
This post was
BOOKMARKED
This is not a good question, (well at least strange enough) as neither of statement is needed to answer the question, stem is enough to do so. This is the only question from the official source where the statements aren't needed to answer the question. I doubt that such a question will occur on real test but if it ever happens then the answer would be D.

If \(zy<xy<0\) is \(|x-z|+|x| = |z|\)

Look at the inequality \(zy<xy<0\):

We can have two cases:

A. If \(y<0\) --> when reducing we should flip signs and we'll get: \(z>x>0\).
In this case: as \(z>x\) --> \(|x-z|=-x+z\); as \(x>0\) and \(z>0\) --> \(|x|=x\) and \(|z|=z\).

Hence in this case \(|x-z|+|x|=|z|\) will expand as follows: \(-x+z+x=z\) --> \(0=0\), which is true.

And:

B. If \(y>0\) --> when reducing we'll get: \(z<x<0\).
In this case: as \(z<x\) --> \(|x-z|=x-z\); as \(x<0\) and \(z<0\) --> \(|x|=-x\) and \(|z|=-z\).

Hence in this case \(|x-z|+|x|=|z|\) will expand as follows: \(x-z-x=-z\) --> \(0=0\), which is true.


So knowing that \(zy<xy<0\) is true, we can conclude that \(|x-z|+|x| = |z|\) will also be true. Answer should be D even not considering the statements themselves.

As for the statements:

Statement (1) says that \(z<x\), hence we have case B.

Statement (2) says that \(y>0\), again we have case B.

Answer: D.

Hope it helps.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

4 KUDOS received
Manager
Manager
avatar
Joined: 04 Jun 2010
Posts: 113
Concentration: General Management, Technology
Schools: Chicago (Booth) - Class of 2013
GMAT 1: 670 Q47 V35
GMAT 2: 730 Q49 V41
Followers: 14

Kudos [?]: 231 [4] , given: 43

Re: Absolute values [#permalink]

Show Tags

New post 17 Sep 2010, 11:33
4
This post received
KUDOS
Hi, rgtiwari
Draw a number line and put 0 in the middle of it. now look at the data you are given. zy<xy<0.
we don't know if y is positive or negative. if y>0 than z is on the left of x which is on the left of zero => z<x and both z & x are originally negative.
the opposite if y<0, x will be on the right of zero and z will be on the right of x. => z>x. and both are originally positive. in both cases it seems that the equation is correct. but don't bother to check that just look at the extra data and continue from there.
If you find it hard to understand with variables just use numbers instead.
now let's look at (1) it tells you that z<x so we know that this is the first case only => the equality is definitely correct (just use numbers that maintain the data in the first case) - Sufficient.
(2) it tells you that y>0. again we are at the first case. - Sufficient.

pay attention that this is not a coincidence that the extra data given leads you in (1) and (2) to the same conclusion. if it doesn't you should suspect whether it's D or not.

Hope that helps.
_________________

Consider Kudos if my post helped you. Thanks!
--------------------------------------------------------------------
My TOEFL Debrief: http://gmatclub.com/forum/my-toefl-experience-99884.html
My GMAT Debrief: http://gmatclub.com/forum/670-730-10-luck-20-skill-15-concentrated-power-of-will-104473.html

2 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 98

Kudos [?]: 868 [2] , given: 43

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 17 Sep 2012, 23:44
2
This post received
KUDOS
rgtiwari wrote:
If zy < xy < 0, is | x - z | + |x| = |z|?

(1) z < x
(2) y > 0


Since zy < 0 and xy < 0, both z and x have opposite sign to y, so they must be either both positive or both negative. In other words, we know that xz > 0.

(1) Given that z < x, when both z and x are negative, |z - x| + |x| = -z + x + (-x) = -z = |z| TRUE
z and x cannot be both positive, because then y would be negative, and from zy < xy we would obtain that z > x.
Sufficient.

(2) Knowing that y > 0, we can deduce that both z and x are negative. In addition, from zy < xy it follows that z < x, and we are in the same case as above.
Sufficient.

Answer D
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 7076
Location: Pune, India
Followers: 2088

Kudos [?]: 13300 [2] , given: 222

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 20 Dec 2012, 19:50
2
This post received
KUDOS
Expert's post
eaakbari wrote:



If | z - x |= |z| - |x| assuming x & z have same sign
| x - z |= |z| - |x| ; Since | x - z | = | z - x |

Implies |z| - |x| = |x| - |z|
which is defn not true
z = 1 , x = 2
Plugging, we get
- 1 = 1 ?!?

Have I misunderstood something?


Before discussing this part, I have discussed in my post that absolute value of z must be greater than absolute value of x.
If absolute value of z is not greater than absolute value of x, then | z - x |= |z| - |x| does not hold when x and z have the same sign.

Since |z| must be greater than |x|,
| x - z | = |x| - |z| does not hold.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

1 KUDOS received
Intern
Intern
avatar
Joined: 11 Jul 2010
Posts: 35
Followers: 0

Kudos [?]: 40 [1] , given: 6

Re: Absolute values [#permalink]

Show Tags

New post 17 Sep 2010, 23:47
1
This post received
KUDOS
Got the approach. Thanks Rafi and Bunuel.
1 KUDOS received
Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 136
Followers: 1

Kudos [?]: 48 [1] , given: 28

Re: If zy<xy<0 is |x-z| + |x| = |z|? 1. z<x>0 2. [#permalink]

Show Tags

New post 17 Sep 2012, 14:16
1
This post received
KUDOS
successstory wrote:
If zy<xy<0 is |x-z| + |x| = |z|?

1. z<x>0
2. y>0


answer d.

why not a?



The question surprisingly does not require either statements for it to be true.

|x-z| + |x| = |z| can be rearranged as |x-z| = |z|-|x|. Now since we have an equal sign( opposed to an inequality, in which we would have to check both sides to make sure they are both positive or both negative to square (and flip)), we square both sides to get (|x-z|)^2 = (|z|-|x|)^2 which yields ===> xz=|x||z|

So our question becomes: Is xz=|x||z|?

Well this can only be true if (x>0 and z>0) OR (x<0 and z<0). In other words x and z must both be the same sign for the above statement to be true.

Now we are given zy<xy<0 as a fact. Two cases arise (+)(-)<(+)(-)<0 or (-)(+)<(-)(+)<0. Notice in both cases x and z are always the same sign!!!!! This statement is true from the gecko. Hence whatever unnecessary statement GMAC tells us will be sufficient. This is an usual problem you wont see again.
1 KUDOS received
Intern
Intern
avatar
Joined: 07 May 2011
Posts: 42
GMAT 1: Q V
GMAT 2: Q V
Followers: 0

Kudos [?]: 18 [1] , given: 11

Re: Absolute values [#permalink]

Show Tags

New post 26 Nov 2012, 17:54
1
This post received
KUDOS
Is this really a 600 level question? Given its time consuming nature, seems more like a 750 level one.

Bunuel wrote:
This is not a good question, (well at least strange enough) as neither of statement is needed to answer the question, stem is enough to do so. This is the only question from the official source where the statements aren't needed to answer the question. I doubt that such a question will occur on real test but if it ever happen then the answer should be D.

If \(zy<xy<0\) is \(|x-z|+|x| = |z|\)

Look at the inequality \(zy<xy<0\):

We can have two cases:

A. If \(y<0\) --> when reducing we should flip signs and we'll get: \(z>x>0\).
In this case: as \(z>x\) --> \(|x-z|=-x+z\); as \(x>0\) and \(z>0\) --> \(|x|=x\) and \(|z|=z\).

Hence in this case \(|x-z|+|x|=|z|\) will expand as follows: \(-x+z+x=z\) --> \(0=0\), which is true.

And:

B. If \(y>0\) --> when reducing we'll get: \(z<x<0\).
In this case: as \(z<x\) --> \(|x-z|=x-z\); as \(x<0\) and \(z<0\) --> \(|x|=-x\) and \(|z|=-z\).

Hence in this case \(|x-z|+|x|=|z|\) will expand as follows: \(x-z-x=-z\) --> \(0=0\), which is true.


So knowing that \(zy<xy<0\) is true, we can conclude that \(|x-z|+|x| = |z|\) will also be true. Answer should be D even not considering the statements themselves.

As for the statements:

Statement (1) says that \(z<x\), hence we have case B.

Statement (2) says that \(y>0\), again we have case B.

Answer: D.

Hope it helps.
1 KUDOS received
Manager
Manager
User avatar
Joined: 24 Mar 2010
Posts: 81
Followers: 1

Kudos [?]: 54 [1] , given: 134

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 20 Dec 2012, 08:32
1
This post received
KUDOS
VeritasPrepKarishma wrote:
Now think, when will | z - x | = |z| - |x| ? It happens when x and z have the same sign.



If | z - x |= |z| - |x| assuming x & z have same sign
| x - z |= |z| - |x| ; Since | x - z | = | z - x |

Implies |z| - |x| = |x| - |z|
which is defn not true
z = 1 , x = 2
Plugging, we get
- 1 = 1 ?!?

Have I misunderstood something?
_________________

- Stay Hungry, stay Foolish -

1 KUDOS received
Intern
Intern
avatar
Joined: 08 Dec 2012
Posts: 2
Followers: 0

Kudos [?]: 1 [1] , given: 0

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 08 Feb 2013, 11:18
1
This post received
KUDOS
The question is not good.
The target question "If zy < xy < 0, is | x - z | + |x| = |z|?"
tells us zy<xy<0, that is, z and x have the same sign,
Thus, target question could be rephrased as "| x - z | = |z|-|x| ?"=> "|z|>|x| ?"
The condition zy<xy<0 could be rephrased as |zy|>|xy|>0 => |z|>|x| , which is already enough to solve the question.
1 KUDOS received
SVP
SVP
User avatar
Joined: 05 Jul 2006
Posts: 1683
Followers: 6

Kudos [?]: 297 [1] , given: 49

GMAT ToolKit User
if zy<xy<0 is Ix-zI+IxI=IzI [#permalink]

Show Tags

New post 15 May 2013, 05:30
1
This post received
KUDOS
from given

y(z-x) < 0 thus z is not = x and x is not equal to zero

if we square the 2 sides of the question

we get

x^2 + z^2 - 2xz +2x^2 - 2xz +x^2 = z^2 this boiles down to is 4x ( x-z) = 0 ? the answer is yes if x = 0 or x=z and no if we can know for sure that neother x=z nor x = 0

and this is given in the question stem.... neither givens are needed ..........as the answer is for sure NO
1 KUDOS received
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12903
Followers: 562

Kudos [?]: 158 [1] , given: 0

Premium Member
Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 18 Jun 2014, 09:13
1
This post received
KUDOS
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

1 KUDOS received
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12903
Followers: 562

Kudos [?]: 158 [1] , given: 0

Premium Member
Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 19 Jun 2015, 12:53
1
This post received
KUDOS
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
Joined: 31 Oct 2015
Posts: 37
Followers: 0

Kudos [?]: 2 [0], given: 53

If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 29 Nov 2015, 20:19
|x-z| + |x| = |z| ?

|x-z| = (absolute value of the sum of x and z, if x and z have different signs) OR (absolute value of the difference between x and z, if x and z have the same sign)

|x-z| = |z| - |x|? Reformulated questions:

Q1) Do x and z have the same sign?(|z| - |x| represents a difference not a sum, so in |x-z|, x and z should have the same sign for this to be true) and
Q2) is |z| > |x|(The difference |z| - |x| is positive, therefore |z| should be > |x|)?

Information given in the question:

zy < xy < 0: gives two possibilities:

Possibility 1) y is negative and x and z are positive and the z > x
Possibility 2) y is positive and x and z are negative and z < x, |z| > |x|



Statement (1) z < x, therefore possibility 2 is true, both x and z are negative, and the equality is correct.
Statement (2) y > 0, therefore possibility 2 is true, both x and z are negative, and the equality is correct.
Expert Post
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 2305
GPA: 3.82
Followers: 160

Kudos [?]: 1318 [0], given: 0

Premium Member CAT Tests
Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 03 Dec 2015, 04:54
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If zy < xy < 0, is | x - z | + |x| = |z|?

(1) z < x
(2) y > 0

We get y(z-x)<0, is |x-z|=|z|-|x|?, zx>0 and z>x? if we modify the question.
There are 3 variables (x,y,z) and 1 equation in the original condition,
2 more equations in the given conditions, so there is high chance (C) will be the answer.
But condition 1=condition 2 answering the question 'no' and sufficient.
The answer therefore becomes (D).

For cases where we need 2 more equations, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Expert Post
Math Forum Moderator
avatar
Joined: 20 Mar 2014
Posts: 2648
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 113

Kudos [?]: 1311 [0], given: 786

GMAT ToolKit User Premium Member Reviews Badge
Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 03 Dec 2015, 04:59
rgtiwari wrote:
If zy < xy < 0, is | x - z | + |x| = |z|?

(1) z < x
(2) y > 0


The question although doe slook menacing but can be solved easily.

You are given zy<xy ---> y (z-x)<0

Per statement 1, z<x --> x-z>0 ---> |x-z| = x-z , thus the LHS of the question becomes = 2x-z and this is definitely not = z .

Per statement 2, y > 0. This also leads to the same information as in statement 1 as from y (z-x)<0 --> if y > 0 then the only case possible is for z<x and as shown in statement 1 , this is sufficient to answer the question.

D is the thus the correct answer.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Intern
Intern
avatar
Joined: 25 Apr 2015
Posts: 4
GMAT Date: 10-12-2015
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 17 Mar 2016, 00:21
data in question stem : zy<xy<0

look at options A) z<x that means 'y' is positive and option B) says the same thing y>0
that means both statements eventually say the same thing
so the answer must be either E or D
take y>0 case and see , we can establish a CONFORM YES condition answer must be D
Intern
Intern
avatar
Joined: 10 Aug 2014
Posts: 3
Location: India
Schools: ISB '18 (A)
GMAT 1: 700 Q49 V37
GPA: 3.5
WE: Analyst (Investment Banking)
Followers: 0

Kudos [?]: 0 [0], given: 27

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 07 Apr 2016, 07:15
Experts please help. What level would you rate this problem? I am currently doing a DS set and got this question right in around 2 minutes but then read that its a sub-600 level some where. Please confirm?
Expert Post
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 02 Aug 2009
Posts: 4141
Followers: 307

Kudos [?]: 3252 [0], given: 100

Re: If zy < xy < 0, is | x - z | + |x| = |z|? [#permalink]

Show Tags

New post 07 Apr 2016, 07:22
AtharvMankotia wrote:
Experts please help. What level would you rate this problem? I am currently doing a DS set and got this question right in around 2 minutes but then read that its a sub-600 level some where. Please confirm?



Hi,

few points--
1) Here it is marked 700 level Q....
2) In actuality it should be close to 700 only sice it deals in two difficult and confusing topics for many - Modulus and Inequalities


Having said that Do not worry about the difficulty level ans least of all, do not let it effect your frame of mind.., it varies from person to person and their strengths. Some one good at inequality may feel it is very easy and at the same time may find a simple Probability as a uphill task...
There are few who are able to do 600-700 level but falter on sub-600, as they look for some trap everywhere..
So, Do not worry much about all this and master all topics
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Re: If zy < xy < 0, is | x - z | + |x| = |z|?   [#permalink] 07 Apr 2016, 07:22

Go to page    1   2    Next  [ 26 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
6 Experts publish their posts in the topic If zy < xy < 0 is |x - z| + |x| = |z| Postal 16 26 Nov 2011, 09:10
35 Experts publish their posts in the topic If zy < xy < 0, is |x-z| + |x| = |z|? zaarathelab 9 28 Jan 2010, 01:50
1 Experts publish their posts in the topic If zy < xy < 0 is |x-z| + |x| = |z| bharat2384 5 17 Jan 2010, 10:42
Experts publish their posts in the topic If zy < xy < 0, is abs(x - z) + abs(x) = abs(z)? (1) z japped187 4 01 Jun 2008, 04:47
5 Experts publish their posts in the topic ZY<XY<0 is |X-Z| + |x| = |Z| doc14 14 25 Apr 2007, 03:18
Display posts from previous: Sort by

If zy < xy < 0, is | x - z | + |x| = |z|?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.