In a room filled with 7 people, 4 people have exactly 1 : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 23 Jan 2017, 22:48

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In a room filled with 7 people, 4 people have exactly 1

Author Message
TAGS:

### Hide Tags

Director
Joined: 12 Oct 2008
Posts: 554
Followers: 3

Kudos [?]: 427 [5] , given: 2

In a room filled with 7 people, 4 people have exactly 1 [#permalink]

### Show Tags

01 Nov 2009, 09:23
5
KUDOS
48
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

47% (02:53) correct 53% (02:00) wrong based on 1207 sessions

### HideShow timer Statistics

In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21
[Reveal] Spoiler: OA

Last edited by Bunuel on 14 Feb 2012, 21:48, edited 1 time in total.
Edited the question and added the OA
Math Expert
Joined: 02 Sep 2009
Posts: 36618
Followers: 7103

Kudos [?]: 93595 [20] , given: 10579

### Show Tags

01 Nov 2009, 09:51
20
KUDOS
Expert's post
17
This post was
BOOKMARKED
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (5-6-7).

Solution #1:
# of selections of 2 out of 7 - $$C^2_7=21$$;
# of selections of 2 people which are not siblings - $$C^1_2*C^1_2$$ (one from first pair of siblings*one from second pair of siblings)+$$C^1_2*C^1_3$$ (one from first pair of siblings*one from triple)+ $$C1^_2*C^1_3$$(one from second pair of siblings*one from triple) $$=4+6+6=16$$.

$$P=\frac{16}{21}$$

Solution #2:
# of selections of 2 out of 7 - $$C^2_7=21$$;
# of selections of 2 siblings - $$C^2_3+C^2_2+C^2_2=3+1+1=5$$;

$$P=1-\frac{5}{21}=\frac{16}{21}$$.

Solution #3:
$$P=2*\frac{3}{7}*\frac{4}{6}+2*\frac{2}{7}*\frac{2}{6}=\frac{4}{7}+\frac{4}{21}=\frac{16}{21}$$.

_________________
VP
Joined: 05 Mar 2008
Posts: 1473
Followers: 11

Kudos [?]: 261 [9] , given: 31

### Show Tags

01 Nov 2009, 18:28
9
KUDOS
4
This post was
BOOKMARKED
You have people 1-2-3-4-5-6-7

4 have exactly 1 sibling which can mean:
1-2 are siblings
3-4 are siblings

3 have exactly 2 siblings which can mean:
5-6-7 are siblings

The probability of picking 1 is (1/7)
The probability of not getting a sibling pair is (5/6) because the only other sibling is 2
Therefore, if 1 is selected first the probability of not getting a sibling pair is 5/42
Multiply that by 4 because the probability is the same whether you start with 1-2-3-4 so you get 20/42 for the first 4 people

Now let's go to the group of 3:
The probability of picking 5 is (1/7)
The probability of not getting a sibling pair is (4/6) which the non-sibling pair is 1-2-3-4
Therefore the probability is 4/42. Multiply that probability by 3, which represent 5-6-7 so the probability is 12/42

Now you have two probabilities: 12/42 and 20/42
add both and you get 32/42 or 16/21
CEO
Joined: 17 Nov 2007
Posts: 3589
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 550

Kudos [?]: 3565 [11] , given: 360

Re: MGMAT CAT - Picking Friends [#permalink]

### Show Tags

02 Dec 2009, 20:27
11
KUDOS
Expert's post
4
This post was
BOOKMARKED
For me it is pretty straightforward:

two mutually exclusive events:

1) we have 4/7 probability of getting 1-sibling person and 5/6 probability of not getting his or her sibling.
2) we have 3/7 probability of getting 2-siblings person and 4/6 probability of not getting his or her sibling.

p=4/7*5/6+3/7*4/6 = 16/21

- Probability
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Intern
Joined: 02 Dec 2009
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: MGMAT CAT - Picking Friends [#permalink]

### Show Tags

02 Dec 2009, 21:50
I also get the same result 16/21, but my approach is a bit different.
There are 7C2 =21 ways to select 2 people in a group of 7.
There are 1+1+3 = 5 ways to select 2 people who are siblings.
So the probability of selecting 2 people who are not siblings is : 1-5/1 =16/21

@ Walker: I also tried to solve the problem in the way that you suggested, but i can't get myself clear why the two events mentioned are mutually exclusive.
I thought the following events are mutually exclusive for this problem, and i arrived with the following solution
1) 1 person from 2-sibling group and 1 person from 1-sibling group, which is the same with your second event:
we have 3/7 probability of getting 2-siblings person and 4/6 probability of not getting his or her sibling.
2) No one from the 2-sibling group.
we have 4/7 probability of getting 1-sibling person and 2/6 probability of not getting his or her sibling and not within one of 2-sibling group.
p = 3/7*4/6 + 4/7*2/6 = 20/42 (this is not within the answers, so i guess it is wrong, but could you please help me where I got wrong with this). Many thanks.
CEO
Joined: 17 Nov 2007
Posts: 3589
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 550

Kudos [?]: 3565 [0], given: 360

Re: MGMAT CAT - Picking Friends [#permalink]

### Show Tags

03 Dec 2009, 04:58
Fiven wrote:
@ Walker: I also tried to solve the problem in the way that you suggested, but i can't get myself clear why the two events mentioned are mutually exclusive.
I thought the following events are mutually exclusive for this problem, and i arrived with the following solution
1) 1 person from 2-sibling group and 1 person from 1-sibling group, which is the same with your second event:
we have 3/7 probability of getting 2-siblings person and 4/6 probability of not getting his or her sibling.
2) No one from the 2-sibling group.
we have 4/7 probability of getting 1-sibling person and 2/6 probability of not getting his or her sibling and not within one of 2-sibling group.
p = 3/7*4/6 + 4/7*2/6 = 20/42 (this is not within the answers, so i guess it is wrong, but could you please help me where I got wrong with this). Many thanks.

3) 1 person from 1-sibling group and next person from 2-sibling group: 4/7*3/6

p = 20/42 + 12/42 = 16/21

Actually, you have three combinations: 1) 21 2) 11 3) 12.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Kaplan GMAT Instructor
Joined: 21 Jun 2010
Posts: 75
Location: Toronto
Followers: 29

Kudos [?]: 164 [2] , given: 2

### Show Tags

05 Jul 2010, 13:52
2
KUDOS
3
This post was
BOOKMARKED
Four people have exactly one sibling and three people have exactly two siblings.

Think about how this can be done...the only way to organize is this is to have two pairs of siblings and one trio of siblings. In other words:

AB (one sibling pair)
CD (another sibling pair)
EFG (a trio of siblings)

This way each of A and B are siblings, each of C and D are siblings, so we have four people each with exactly one sibling. And each of E, F, and G are siblings so we have three people each of whom has exactly two siblings.

Because this is a "NOT" probability question, we should see how many ways we CAN select two individuals who are siblings.

Well, we can select the AB pair or the CD pair. So far, that's 2 ways. We can also select any two people from the EFG trio, so that's another 3C2 or 3 ways.

So, there are a total of 2+3 = 5 ways of pulling out 2 individuals who are siblings.

Probability = (#desired)/(#total)

The denominator of the formula is just all the ways we can select any two people from the seven. So we have:

Probability of selecting 2 people who are siblings = 5/7C2 = 5/21

Therefore, the probability of selecting 2 people who are NOT siblings is:

1 - 5/21 = 16/21

Choose E.
Intern
Joined: 17 Jun 2010
Posts: 16
Followers: 0

Kudos [?]: 1 [0], given: 0

### Show Tags

05 Jul 2010, 16:42
That is one way, I think it is easier to calculate the probabilities than the combinations.

there is 4/7 chance of selecting a person with one sibling initially with a 5/6 probability the second person will not be a sibling.

There is a 3/7 Chance of selecting a person with 2 siblings initially with 4/6 probability the second person will not be a sibling.

4/7 * 5/6 + 3/7 * 4/6 = 20/42 + 12/42 = 32/42 = 16/21
Manager
Joined: 06 Oct 2009
Posts: 69
Followers: 2

Kudos [?]: 34 [0], given: 5

### Show Tags

05 Jul 2010, 17:39
Great explanations guys.

Posted from my mobile device
_________________

+1 kudos me if this is of any help...

Manager
Joined: 20 Mar 2010
Posts: 84
Followers: 2

Kudos [?]: 88 [2] , given: 1

### Show Tags

10 Aug 2010, 23:06
2
KUDOS
Jinglander wrote:
In a room filled with 7 people, 4 have 1 sibling and 3 have two siblings. If two people at selected at random what is the prob that they are not siblings.

Can someone explain.

Out of 7 people
4 have 1 sibling So these 4 form 2 pairs of siblings
3 have 2 siblings So all these 3 are siblings to each other.

So the 7 people are like A1A2, B1B2, C1C2C3 where A1 and A2 are siblings to each other , B1 and B2 are siblings to each other and C1,C2 and C3 are siblings to each other.

Probability of selecting 2 people who are not siblings
= 1 - Probability of selecting 2 people who are siblings
= 1 - $$(C^2_1+C^3_2)/C^7_2$$ (Select either A1A2/B1B2 or any 2 out of C1C2C3)
= 1- 5/21 = 16/21
_________________

___________________________________
Please give me kudos if you like my post

Intern
Affiliations: ACCA
Joined: 17 Apr 2010
Posts: 34
Schools: IMD, Insead, LBS, IE, Cambridge, Oxford
Followers: 0

Kudos [?]: 14 [0], given: 2

### Show Tags

11 Aug 2010, 00:59
total possibilities 2C7=21
possibility that selected siblings = 2C2 + 2C2 + 2C3 = 1 + 1 + 3 =5
probability 1-5/21
Intern
Joined: 04 Aug 2010
Posts: 21
Followers: 0

Kudos [?]: 28 [0], given: 10

### Show Tags

13 Sep 2010, 18:36
total possibilities 2C7=21
possibility that selected siblings = 2C2 + 2C2 + 2C3 = 1 + 1 + 3 =5
probability 1-5/21

Math Expert
Joined: 02 Sep 2009
Posts: 36618
Followers: 7103

Kudos [?]: 93595 [3] , given: 10579

### Show Tags

13 Sep 2010, 18:57
3
KUDOS
Expert's post
4
This post was
BOOKMARKED
harithakishore wrote:
total possibilities 2C7=21
possibility that selected siblings = 2C2 + 2C2 + 2C3 = 1 + 1 + 3 =5
probability 1-5/21

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (5-6-7).

Let's calculate the probability of opposite event and subtract it from 1. Opposite event would be that chosen 2 individuals are siblings.

# of selections of 2 out of 7 - $$C^2_7=21$$;
# of selections of 2 siblings - $$C^2_3+C^2_2+C^2_2=3+1+1=5$$, here $$C^2_3$$ is the # of ways to choose 2 siblings out of siblings 5-6-7, $${C^2_2}$$ is the # of ways to choose 2 siblings out of siblings 1-2, and $$C^2_2$$ is the # of ways to choose 2 siblings out of siblings 3-4;

$$P=1-\frac{5}{21}=\frac{16}{21}$$.

You can check other approaches in my first post.

Hope it's clear.
_________________
Intern
Joined: 04 Aug 2010
Posts: 21
Followers: 0

Kudos [?]: 28 [0], given: 10

### Show Tags

13 Sep 2010, 18:58
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?
A 5/21
B 3/7
C 4/7
D 5/7
E 16/21

There are suppose A B C D E F G members in the room 4 people who have exactly one sibling....A B C D....(A is Bs sibling and viceversa) (C is Ds sibling and viceversa)...now remaning EFG are 3 people who have exactly 2 siblings....(E has F and G as his/her sibling and so on..)
there are now 3 different set of siblings (A and B)
(C and D);(EFG)
Now first selecting 2 people out of 7 is 7C2=21
first sibling pair----(A and B)--selecting 2 people --2C2=1
second sibling pair (C and D)--selecting 2 people--2C2=1
third sibling pair (E F G)--selecting 2 out of 3 --3C2=3

total= 1+1+3=5
but,a/c to formula P(success)-1-p(fail)
here,p(failure)is selecting 2 people who are siblings
=5/21(21 is 7C2)
=1-5/21
=16/21
ANS E
Manager
Joined: 08 Oct 2010
Posts: 213
Location: Uzbekistan
Schools: Johnson, Fuqua, Simon, Mendoza
WE 3: 10
Followers: 10

Kudos [?]: 673 [0], given: 974

### Show Tags

16 Dec 2010, 05:54
first, find probability of getting two pairs and triplet  4/7*1/6=4/42 and 3/7*2/6=6/42
second, add these two results  4/42 + 6/42 = 10/42 = 5/21
third, subtract the result of addition from 1  1 – 5/21 = 16/21
Director
Joined: 01 Feb 2011
Posts: 755
Followers: 14

Kudos [?]: 115 [0], given: 42

### Show Tags

14 Aug 2011, 16:04
there are 7 people in the room.

there are 4 ppl with exactly one sibling. lets consider the following
1,3 - group1
2,4 - group 2
there are 3 people with exactly two siblings
5,6,7 - group 3

so the probability of picking 2 non siblings is nothing but picking each from different groups.

= (2c1*2c1 + 2c1*3c1 +3c1*2c1)/7c2 = 16/21

Senior Manager
Joined: 23 Oct 2010
Posts: 386
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Followers: 21

Kudos [?]: 326 [0], given: 73

Re: Toughest MGMAT Math Problems (2/20) [#permalink]

### Show Tags

01 Apr 2012, 00:16
u have 2 groups
(a b x y) and (c d e)

note, that a=b (siblings)
c=d=e (siblings)

to find no two identical siblings, u need to find 2 no siblings in group 1 , or 1 sibling from group 1 and 1 sibling from group 2

1.to find 2 no siblings in group 1 (a b x y)-

u have 4 such combinations - (a;x) (a;y) (b;x) (b;y)

2. 1 sibling from group 1 and 1 sibling from group 2 -

4C1*3C1=4*3=12

(4+12)/7C2=16/21

_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Intern
Joined: 08 Oct 2007
Posts: 33
Followers: 0

Kudos [?]: 3 [0], given: 0

### Show Tags

13 Jun 2012, 22:25
Bunuel wrote:
alchemist009 wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

5/21
3/7
4/7
5/7
16/21

Bunuel,

can you explain your #3 approach.

Math Expert
Joined: 02 Sep 2009
Posts: 36618
Followers: 7103

Kudos [?]: 93595 [1] , given: 10579

### Show Tags

13 Jun 2012, 23:28
1
KUDOS
Expert's post
1
This post was
BOOKMARKED
Rice wrote:
Bunuel wrote:
alchemist009 wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

5/21
3/7
4/7
5/7
16/21

Bunuel,

can you explain your #3 approach.

Sure.

We have the following siblings: {1, 2}, {3, 4} and {5, 6, 7}.

Now, in order to select two individuals who are NOT siblings we must select EITHER one from {5, 6, 7} and ANY from {1, 2} or {3, 4} OR one from {1, 2} and another from {3, 4}.

$$P=2*\frac{3}{7}*\frac{4}{6}+2*\frac{2}{7}*\frac{2}{6}=\frac{4}{7}+\frac{4}{21}=\frac{16}{21}$$.

3/7 - selecting a sibling from {5, 6, 7}, 4/6 - selecting any from {1, 2} or {3, 4}. Multiplying by 2 since this selection can be don in two ways: the first from {5, 6, 7} and the second from {1, 2} or {3, 4} OR the first from {1, 2} or {3, 4} and the second from {5, 6, 7};

2/7 - selecting a sibling from {1, 2}, 2/6 - selecting a sibling from {3, 4}. Multiplying by 2 since this selection can be don in two ways: the first from {1, 2} and the second from {3, 4} OR the first from {3, 4} and the second from {1, 2}.

Other approaches here: in-a-room-filled-with-7-people-4-people-have-exactly-87550.html#p645861

Hope it's clear.
_________________
Senior Manager
Joined: 07 Sep 2010
Posts: 336
Followers: 6

Kudos [?]: 665 [0], given: 136

### Show Tags

30 Jun 2012, 19:51
Hi Bunuel,

I have a doubt in approach 1. We have created groups and then we made the selections. i.e selecting one individual from group 1 and another individual from group 2 or select one individual from group 1 and another individual from Group 3 and so on..

However, I would like to ask, can't we dissolve the group and then find the probability.

Lets say, we have total (A,B) (C,D) and (EFG) as groups

Case 1

i.e. Select One individual from Group 1->(A,B) This can be done in 2C1 way and now select the other individual from remaining 5 individuals i.e from C,D,E,F,G - this can be done in 5C1 way.
Therefore, total number of ways 2C1*5C1

Case 2

Similarly, select one sibling from (C,D) and select the other sibling from (A,B,E,F,G) ie total number of ways 2C1*5C1

Case 3

Last Case, select one sibling from (E,F,G) and remaining from (A,B,C,D) i.e. 3C1* 4C1

Whats wrong with this approach. Please clarify.

Thanks
H

Bunuel wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).

Solution #1:
# of selections of 2 out of 7 - $$C^2_7=21$$;
# of selections of 2 people which are not siblings - $$C^1_2*C^1_2$$ (one from first pair of siblings*one from second pair of siblings)+$$C^1_2*C^1_3$$ (one from first pair of siblings*one from triple)+ $$C1^_2*C^1_3$$(one from second pair of siblings*one from triple) $$=4+6+6=16$$.

$$P=\frac{16}{21}$$

_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Re: Probability   [#permalink] 30 Jun 2012, 19:51

Go to page    1   2   3    Next  [ 44 posts ]

Similar topics Replies Last post
Similar
Topics:
2 In a room filled with 7 people, 4 people have exactly 6 03 Oct 2011, 18:06
6 In a room filled with 7 people, 4 people have exactly 1 sibl 8 05 Jul 2010, 12:45
70 In a room filled with 7 people, 4 people have exactly 1 sibl 32 09 Jul 2009, 18:39
1 In a room filled with 7 people, 4 people have exactly 1 3 16 Sep 2008, 07:42
6 In a room filled with 7 people, 4 people have exactly 1 sibl 6 14 Jul 2008, 17:24
Display posts from previous: Sort by