Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Sequence of terms MGMAT [#permalink]
15 Feb 2011, 07:35

5

This post received KUDOS

Expert's post

mariyea wrote:

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3.

(2) The second-to-last term is 3^10.

I think the ans should be D. But OA is different.

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3 --> sequence is: 3, 9, 27, 81, ... so the fourth term is 81. Sufficient.

(2) The second-to-last term is 3^10 --> since we don't know how many terms are there in the sequence then we don't know which term is second-to-last. For example: if it's third term then fourth (and last) will be 3^11, if it's fifth term then the fourth term is 3^9, ... Not sufficient.

Re: In a sequence of terms in which each term is three times the [#permalink]
16 Jan 2012, 16:24

1

This post received KUDOS

Expert's post

SonyGmat wrote:

Bunuel wrote:

mariyea wrote:

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3.

(2) The second-to-last term is 3^10.

I think the ans should be D. But OA is different.

regarding the second statement. Someone could interpret the second-to-last term as the ratio between the second and the last term.

Since we know that it is an exponential expression dividing the second with the last term should result a fraction smaller than 1. Therefore, someone could assume that the second statement is wrong.

is my reasoning valid?

Responding to a pm.

If it were the case it would have been something like "the ratio of second to last term is ..."

Also on the GMAT, two data sufficiency statements always provide TRUE information and these statements never contradict each other. So if on the GMAT your interpretation of the statements leads you to conclude that the statements are impossible/incorrect or contradict each other then the case would be that your interpretation is wrong not the statements. _________________

Re: Sequence of terms MGMAT [#permalink]
15 Feb 2011, 07:59

Bunuel wrote:

mariyea wrote:

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3.

(2) The second-to-last term is 3^10.

I think the ans should be D. But OA is different.

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3 --> sequence is: 3, 9, 27, 81, ... so the fourth term is 81. Sufficient.

(2) The second-to-last term is 3^10 --> since we don't know how many terms are there in the sequence then we don't know which term is second-to-last. For example: if it's third term then fourth (and last) will be 3^11, if it's fifth term then the fourth term is 3^9, ... Not sufficient.

Answer: A.

I had to think about that for a bit before I could sincerely agree with you, Bunuel. Thanks! _________________

Thank you for your kudoses Everyone!!!

"It always seems impossible until its done." -Nelson Mandela

Re: Sequence of terms MGMAT [#permalink]
15 Feb 2011, 10:03

Bunuel wrote:

mariyea wrote:

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3.

(2) The second-to-last term is 3^10.

I think the ans should be D. But OA is different.

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3 --> sequence is: 3, 9, 27, 81, ... so the fourth term is 81. Sufficient.

(2) The second-to-last term is 3^10 --> since we don't know how many terms are there in the sequence then we don't know which term is second-to-last. For example: if it's third term then fourth (and last) will be 3^11, if it's fifth term then the fourth term is 3^9, ... Not sufficient.

Answer: A.

You are truly awesome .. with DS.... i kinda assumed it to be 2nd term when said 2nd to last assuming that there r only 4 terms...thanks bunuel...

Re: In a sequence of terms in which each term is three times the [#permalink]
13 Jan 2012, 15:39

Bunuel wrote:

mariyea wrote:

In a sequence of terms in which each term is three times the previous term, what is the fourth term?

(1) The first term is 3.

(2) The second-to-last term is 3^10.

I think the ans should be D. But OA is different.

regarding the second statement. Someone could interpret the second-to-last term as the ratio between the second and the last term.

Since we know that it is an exponential expression dividing the second with the last term should result a fraction smaller than 1. Therefore, someone could assume that the second statement is wrong.

Re: In a sequence of terms in which each term is three times the [#permalink]
24 Oct 2014, 07:39

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

The Cambridge open day wasn’t quite what I was used to; no sample lectures, no hard and heavy approach; and it even started with a sandwich lunch. Overall...

I couldn’t help myself but stay impressed. young leader who can now basically speak Chinese and handle things alone (I’m Korean Canadian by the way, so...