In city A, the streets are aligned in a grid, where the east : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 24 Jan 2017, 08:03

# STARTING SOON:

How to Get Off the MBA Waitlist: YouTube Live with Personal MBA Coach  |  Click Here to Join the Session

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In city A, the streets are aligned in a grid, where the east

Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 15 Jun 2010
Posts: 368
Schools: IE'14, ISB'14, Kellogg'15
WE 1: 7 Yrs in Automobile (Commercial Vehicle industry)
Followers: 11

Kudos [?]: 369 [1] , given: 50

In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 08:20
1
KUDOS
6
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

38% (03:10) correct 63% (02:18) wrong based on 80 sessions

### HideShow timer Statistics

Attachment:

Pict.JPG [ 17.67 KiB | Viewed 3368 times ]
In city A, the streets are aligned in a grid, where the east-west roads are called 1st Rd, 2nd Rd, 3rd Rd, etc, increasing in number as one moves northward. The north-south roads are called 1st Ave, 2nd Ave, 3rd Ave, etc, increasing in number as one moves eastward. There is a park that runs from 5th Ave to 7th Ave and from 3rd Rd to 5th Rd, as pictured. If Bill needs to walk from the corner of 2nd Rd and 3rd Ave to the corner of 6th Rd and 8th Ave in the shortest possible time without walking through the park, how many different routes could he take?

A) 6
B) 66
C) 72
D) 126
E) 262

Is there any formula to find out directly??
[Reveal] Spoiler: OA

_________________

Regards
SD
-----------------------------
Press Kudos if you like my post.
Debrief 610-540-580-710(Long Journey): http://gmatclub.com/forum/from-600-540-580-710-finally-achieved-in-4th-attempt-142456.html

Last edited by SOURH7WK on 07 Aug 2012, 12:08, edited 1 time in total.
Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 894 [3] , given: 43

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 11:55
3
KUDOS
SOURH7WK wrote:
In city A, the streets are aligned in a grid, where the east-west roads are called 1st Rd, 2nd Rd, 3rd Rd, etc, increasing in number as one moves northward. The north-south roads are called 1st Ave, 2nd Ave, 3rd Ave, etc, increasing in number as one moves eastward. There is a park that runs from 5th Ave to 7th Ave and from 3rd Rd to 5th Rd, as pictured. If Bill needs to walk from the corner of 2nd Rd and 3rd Ave to the corner of 6th Rd and 8th Ave in the shortest possible time without walking through the park, how many different routes could he take?

A) 6
B) 66
C) 72
D) 126
E) 262

Is there any formula to find out directly??

Really don't know of any formula that could help...
Pretty cruel, definitely not a real GMAT test question.

The best I could come up with is as follows:

Each optimal path (of minimal length) would consist of 5 walks to the right (R) and 4 walks up (U).
The total number of such paths is given by $$9C4=\frac{9*8*7*6}{2*3*4}=126.$$

We have to eliminate those optimal paths that go through the center of the park (the intersection between 4th Road and 6th Avenue). He can still walk around the park. To reach the center of the park we need 3R and 2U walks - a total of 5C2=5*4/2=10 possibilities. From the center of the park, to reach the final destination we need 2R and 2U walks - another 4C2=4*3/2=6 possibilities. This would give 10*6=60 paths to eliminate, leaving 126-60=66 possibilities.

Are you sure OA is C?
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Senior Manager
Joined: 15 Jun 2010
Posts: 368
Schools: IE'14, ISB'14, Kellogg'15
WE 1: 7 Yrs in Automobile (Commercial Vehicle industry)
Followers: 11

Kudos [?]: 369 [0], given: 50

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 12:11
Sorry!! U are correct Ans is (B) 66. I have edited the Answer.
thank U very much.

Can u explain the logic of that 60 ways that u subtracted.
_________________

Regards
SD
-----------------------------
Press Kudos if you like my post.
Debrief 610-540-580-710(Long Journey): http://gmatclub.com/forum/from-600-540-580-710-finally-achieved-in-4th-attempt-142456.html

Last edited by SOURH7WK on 07 Aug 2012, 12:19, edited 1 time in total.
Senior Manager
Joined: 15 Jun 2010
Posts: 368
Schools: IE'14, ISB'14, Kellogg'15
WE 1: 7 Yrs in Automobile (Commercial Vehicle industry)
Followers: 11

Kudos [?]: 369 [1] , given: 50

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 12:16
1
KUDOS
By the way OE provided as per source is below:

Draw a grid representing the problem. At every intersection of 2 lines, put the number representing how many possible ways it is to get to that intersection while walking only north and east. There's only one way of walking straight north up the most westerly avenue, so put ones all along that path. Same for the direct east path. Once the first rows, up-down and left-right, have been filled in, you can work on the internal intersections. For each intersection, add the numbers found at the intersections to the west and south of it. Since there are such and such many ways to get to the two intersections one spot away from this intersection, adding them together provides the total number of ways to get to that intersection. See below, filled in for this particular question, yielding the answer 66 possible shortest routes.
Attachments

Exp.JPG [ 20.62 KiB | Viewed 3235 times ]

_________________

Regards
SD
-----------------------------
Press Kudos if you like my post.
Debrief 610-540-580-710(Long Journey): http://gmatclub.com/forum/from-600-540-580-710-finally-achieved-in-4th-attempt-142456.html

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 894 [2] , given: 43

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 12:57
2
KUDOS
SOURH7WK wrote:
Sorry!! U are correct Ans is (B) 66. I have edited the Answer.
thank U very much.

Can u explain the logic of that 60 ways that u subtracted.

Did you understand the way I got the total number of paths 126?
The 60 is similar, but because each path has to go through the center of the park, I had to split each such path into two:
from start to the center of the park and then, from the center to destination.
So, it will be (the number of ways to reach the center) * (the number of ways to go from the center to destination).
First path is of type 3R and 2U, the second path is 2R and 2U.
Therefore, (5*4/2) * (4*3/2) = 60.

For example, for the first path, which is composed of 3 right walks and 2 up walks, the sequence is of length 5 (walks). I just have to decide out of the 5 walks, when to go up, the other three I will certainly go to the right. This is given by 5C2 = 10. This you can even check, the list is not sooo long:
UURRR
RUURR
RRUUR
RRRUU
URURR
URRUR
URRRU
RURUR
RURRU
RRURU

But it is important to understand how each path is built, and the number of choices. Then, use the appropriate formulas.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7131
Location: Pune, India
Followers: 2140

Kudos [?]: 13712 [4] , given: 222

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

07 Aug 2012, 22:03
4
KUDOS
Expert's post
1
This post was
BOOKMARKED
SOURH7WK wrote:
In city A, the streets are aligned in a grid, where the east-west roads are called 1st Rd, 2nd Rd, 3rd Rd, etc, increasing in number as one moves northward. The north-south roads are called 1st Ave, 2nd Ave, 3rd Ave, etc, increasing in number as one moves eastward. There is a park that runs from 5th Ave to 7th Ave and from 3rd Rd to 5th Rd, as pictured. If Bill needs to walk from the corner of 2nd Rd and 3rd Ave to the corner of 6th Rd and 8th Ave in the shortest possible time without walking through the park, how many different routes could he take?

A) 6
B) 66
C) 72
D) 126
E) 262

Is there any formula to find out directly??

Let me add a little bit of detail to the solution given above.

You need to go from a point that is to the bottom left to a point that is to the top right. So you should take steps towards right and top. Since Bill wants to take shortest possible time, he should not go left or down because that is the opposite direction. His destination lies towards right and up.
Say, he takes one step to go from one intersection to the next one. He can take various routes e.g.
RRRRRUUUU (R represents one step right and U represents one step up)
RRRRUUUUR
etc

The total number of ways is basically obtained by re-arranging 5 Rs and 4 Us. You can do it in 9!/5!*4! = 126 ways (we divide by 5! and 4! because all Rs and all Us are identical)

Now, what happens due to the park? Everything is the same except that one intersection is not available - 4th Rd, 6th Ave. You cannot include this intersection in your journey. So what do you do? You remove all paths that include this intersection.

Now our question is this: In how many ways can you go from the corner of 2nd Rd and 3rd Ave to the corner of 6th Rd and 8th Ave when you include the corner of 4th Rd, 6th Ave?
From the corner of 2nd Rd and 3rd Ave to the corner of 4th Rd and 6th Ave - You need to take 3 steps right and 2 steps up - RRRUU etc. No of ways = 5!/3!*2! = 10
From the corner of 4th Rd and 6th Ave to the corner of 6th Rd and 8th Ave - You need to take 2 steps right and 2 steps up - RRUU etc. No of ways = 4!/2!*2! = 6

Total number of ways in which the 4th Rd, 6th Ave is included = 10*6 = 60 ways

Number of paths in which the corner of 4th Rd, 6th Ave is not included = 126 - 60 = 66
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for 199 Veritas Prep Reviews Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7131 Location: Pune, India Followers: 2140 Kudos [?]: 13712 [0], given: 222 Re: In city A, the streets are aligned in a grid, where the east [#permalink] ### Show Tags 07 Aug 2012, 22:05 P.S. - Didn't see you have already posted the explanation... _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for199

Veritas Prep Reviews

Math Expert
Joined: 02 Sep 2009
Posts: 36625
Followers: 7106

Kudos [?]: 93644 [1] , given: 10583

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

08 Aug 2012, 00:00
1
KUDOS
Expert's post
Current Student
Status: Everyone is a leader. Just stop listening to others.
Joined: 22 Mar 2013
Posts: 991
Location: India
GPA: 3.51
WE: Information Technology (Computer Software)
Followers: 165

Kudos [?]: 1474 [1] , given: 227

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

21 Jul 2013, 13:21
1
KUDOS
Center of the park is much important in this problem.
To pass through the park one must have to pass through this point and further to destination.

Ans = Total possible paths to destination(TPPD) - paths passing through the park (PPTP)

All possible paths covering min distance are permutation of pattern RRRRRUUUU R-> One step right / U-> One step up
Thus
TPPD = 9!/(5!x4!) = 126 (direct formula of permutation applied)

I have calculated PPTD in two steps first find all paths from origin to center of park:
1. Possible moves RRRUU total permutations 5!/(3!x2!) = 10
2. From park center to destination, in moves RRUU, total permutations as 4!/(2!x2!)=6.
Thus PPTD= 10 X 6 = 60

Ans = 126 -60 = 66

Refer following image to understand the logic.
Attachment:

Park.jpg [ 63.05 KiB | Viewed 2482 times ]

_________________

Piyush K
-----------------------
Our greatest weakness lies in giving up. The most certain way to succeed is to try just one more time. ― Thomas A. Edison
Don't forget to press--> Kudos
My Articles: 1. WOULD: when to use? | 2. All GMATPrep RCs (New)
Tip: Before exam a week earlier don't forget to exhaust all gmatprep problems specially for "sentence correction".

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13542
Followers: 578

Kudos [?]: 163 [0], given: 0

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

23 Aug 2014, 22:02
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13542
Followers: 578

Kudos [?]: 163 [0], given: 0

Re: In city A, the streets are aligned in a grid, where the east [#permalink]

### Show Tags

08 Jun 2016, 13:21
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: In city A, the streets are aligned in a grid, where the east   [#permalink] 08 Jun 2016, 13:21
Similar topics Replies Last post
Similar
Topics:
17 In a city where all streets run east-to-west, all avenues run north-to 5 17 Mar 2015, 10:26
22 In a city where all streets run east-to-west, all avenues run north-to 10 14 Oct 2014, 22:50
12 Alicia lives in a town whose streets are on a grid system 11 01 Feb 2012, 10:05
1 In city A, the streets are aligned in a grid, where the east 1 19 Jun 2011, 06:56
3 In city A, the streets are aligned in a grid (see attachment 5 21 Mar 2011, 19:13
Display posts from previous: Sort by