Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: counting principles [#permalink]
18 Nov 2009, 04:55
3
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
1. In how many different ways can trhee letters be posted from seven different postboxes assuming no two letters can be posted from the same postbox?
First letter could be sent from ANY of the seven postboxes - 7 (7 options); Second letter could be sent from the SIX postboxes left - 6 (6 options); Third letter could be sent from the FIVE postboxes left - 5 (5 options);
Total # of ways =7*6*5=210
2. what if there is no restriction, that is, if two or more letters can be posted from the same box?
In this problem we don't have restriction, thus ANY letter could be sent from ANY postboxes =7*7*7=7^3=343 _________________
Re: counting principles [#permalink]
17 Feb 2010, 02:47
Ravshonbek wrote:
1. In how many different ways can trhee letters be posted from seven different postboxes assuming no two letters can be posted from the same postbox?
2. what if there is no restriction, that is, if two or more letters can be posted from the same box?
warm up
1. 7 x 6 x 5 = 210 2. 7 x 7 x 7 = 343 _________________
Cheers! JT........... If u like my post..... payback in Kudos!!
|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice| |For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|
Re: counting principles [#permalink]
10 Feb 2012, 03:03
Bunuel wrote:
1. In how many different ways can trhee letters be posted from seven different postboxes assuming no two letters can be posted from the same postbox?
First letter could be sent from ANY of the seven postboxes - 7 (7 options); Second letter could be sent from the SIX postboxes left - 6 (6 options); Third letter could be sent from the FIVE postboxes left - 5 (5 options);
Total # of ways =7*6*5=210
2. what if there is no restriction, that is, if two or more letters can be posted from the same box?
In this problem we don't have restriction, thus ANY letter could be sent from ANY postboxes =7*7*7=7^3=343
Hi Bunuel,
Could you please elaborate on the second question. Couldn't figure out why. _________________
******************** Push+1 kudos button please, if you like my post.
Re: In how many different ways can trhee letters be posted from [#permalink]
10 Feb 2012, 04:05
1. 7 (no restriction) * 6 (can not be the same as the first one) * 5 (can not be the same as the first and second one) = 210 2. 7 (no restriction) * 7 (no restriction) * 7 (no restriction) = 343
Re: counting principles [#permalink]
10 Feb 2012, 08:13
1
This post received KUDOS
Expert's post
mohankumarbd wrote:
Bunuel wrote:
1. In how many different ways can trhee letters be posted from seven different postboxes assuming no two letters can be posted from the same postbox?
First letter could be sent from ANY of the seven postboxes - 7 (7 options); Second letter could be sent from the SIX postboxes left - 6 (6 options); Third letter could be sent from the FIVE postboxes left - 5 (5 options);
Total # of ways =7*6*5=210
2. what if there is no restriction, that is, if two or more letters can be posted from the same box?
In this problem we don't have restriction, thus ANY letter could be sent from ANY postboxes =7*7*7=7^3=343
Hi Bunuel,
Could you please elaborate on the second question. Couldn't figure out why.
Welcome to GMAT Club. Please find below answer to your question:
"Two or more letters can be posted from the same box" means that all 3 letters can be posted from the same postbox (so we don't have the restriction we had for the first question).
Now, since there are 7 postboxes then each of these 3 letters has 7 options to be posted from, total # of ways is 7*7*7=7^3.
Re: counting principles [#permalink]
25 May 2013, 07:22
Bunuel wrote:
mohankumarbd wrote:
Bunuel wrote:
1. In how many different ways can trhee letters be posted from seven different postboxes assuming no two letters can be posted from the same postbox?
First letter could be sent from ANY of the seven postboxes - 7 (7 options); Second letter could be sent from the SIX postboxes left - 6 (6 options); Third letter could be sent from the FIVE postboxes left - 5 (5 options);
Total # of ways =7*6*5=210
2. what if there is no restriction, that is, if two or more letters can be posted from the same box?
In this problem we don't have restriction, thus ANY letter could be sent from ANY postboxes =7*7*7=7^3=343
Hi Bunuel,
Could you please elaborate on the second question. Couldn't figure out why.
Welcome to GMAT Club. Please find below answer to your question:
"Two or more letters can be posted from the same box" means that all 3 letters can be posted from the same postbox (so we don't have the restriction we had for the first question).
Now, since there are 7 postboxes then each of these 3 letters has 7 options to be posted from, total # of ways is 7*7*7=7^3.
Hope it's clear.
Hi Bunnel,
I tried to do the second question via combinatorics, but i am not able to figure it out, please check the below method and guide where i went wrong
= all three in one box +2 in one box and the last one in a different box + all three in different boxes = 3c3*7+3c2*7c1*6c5+3c1*7c3 = 7+ 3*7*6+3*7*6*5 = 7 + 126 + 270 = wrong
Re: counting principles [#permalink]
25 May 2013, 12:06
Quote:
I tried to do the second question via combinatorics, but i am not able to figure it out, please check the below method and guide where i went wrong
= all three in one box +2 in one box and the last one in a different box + all three in different boxes = 3c3*7+3c2*7c1*6c5+3c1*7c3 = 7+ 3*7*6+3*7*6*5 = 7 + 126 + 270 = wrong
Think it in this way, First letter can go to any 7 post offices Same case with second and same case with the third letter as well so 7*7*7 _________________
Re: In how many different ways can trhee letters be posted from [#permalink]
14 Jul 2014, 06:50
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: In how many different ways can trhee letters be posted from [#permalink]
21 Feb 2015, 23:00
1
This post received KUDOS
Expert's post
Hi icetray,
Since the question is worded in a "vague" way, you bring up an interesting interpretation of it. Thankfully, questions on the Official GMAT are worded to remove ambiguity and "bias" on the part of the reader, so you won't have to worry about that on Test Day. This prompt reads as if it were created by the original poster, so it's not clear what he/she was "intending" the question to mean.
As it is, your interpretation of the prompt makes a lot of sense - there does not seem to be any reason why we should emphasize the "order" of the letters (there's no reference to "first letter", "second letter", "third letter" and no reference to "arrangements"). Using post-boxes ABC would be same as BCA, CBA, etc., so if we interpret the prompt as a "combinations" question, then 7c3 = 35 would be correct.
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...