Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Aug 2014, 19:45

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In how many ways can the letters of the word PERMUTATIONS be

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 12 Mar 2010
Posts: 10
Followers: 0

Kudos [?]: 2 [0], given: 1

In how many ways can the letters of the word PERMUTATIONS be [#permalink] New post 17 May 2010, 13:01
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

57% (02:27) correct 43% (01:09) wrong based on 5 sessions
Here a couple of problems I encountered. Let me know your views on them. They may not necessarily be of GMAT format. Please share your views, nevertheless.

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

Cheers
Kaplan Promo CodeKnewton GMAT Discount CodesGMAT Pill GMAT Discount Codes
Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 19052
Followers: 3371

Kudos [?]: 24534 [4] , given: 2680

Re: Interesting problems of Permutations and Combinations [#permalink] New post 18 May 2010, 00:13
4
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
chandrun wrote:
Here a couple of problems I encountered. Let me know your views on them. They may not necessarily be of GMAT format. Please share your views, nevertheless.

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

Cheers


THEORY:

Permutations of n things of which P_1 are alike of one kind, P_2 are alike of second kind, P_3 are alike of third kind ... P_r are alike of r_{th} kind such that: P_1+P_2+P_3+..+P_r=n is:

\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}.

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \frac{6!}{2!2!}, as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \frac{9!}{4!3!2!}.

Back to the original questions:

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

There are 12 letters in the word "PERMUTATIONS", out of which T is repeated twice.

1. Choosing 4 letters out of 10 (12-2(P and S)=10) to place between P and S = 10C4 = 210;
2. Permutation of the letters P ans S (PXXXXS or SXXXXP) = 2! =2;
3. Permutation of the 4 letters between P and S = 4! =24;
4. Permutations of the 7 units {P(S)XXXXS(P)}{X}{X}{X}{X}{X}{X} = 7! = 5040;
5. We should divide multiplication of the above 4 numbers by 2! as there is repeated T.

Hence: \frac{10C4*2!*4!*7!}{2!}=25,401,600

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

There are 11 letters in the word "MISSISSIPPI ", out of which: M=1, I=4, S=4, P=2.

Total # of permutations is \frac{11!}{4!4!2!};
# of permutations with 4 I's together is \frac{8!}{4!2!}. Consider 4 I's as one unit: {M}{S}{S}{S}{S}{P}{P}{IIII} - total 8 units, out of which {M}=1, {S}=4, {P}=2, {IIII}=1.

So # of permutations with 4 I's not come together is: \frac{11!}{4!4!2!}-\frac{8!}{4!2!}.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 16 Mar 2010
Posts: 191
Followers: 2

Kudos [?]: 38 [0], given: 9

GMAT Tests User
Re: Interesting problems of Permutations and Combinations [#permalink] New post 18 May 2010, 06:09
Thank you bunuel, Doing great job dude...
Hats off!!!!
Intern
Intern
avatar
Joined: 12 Mar 2010
Posts: 10
Followers: 0

Kudos [?]: 2 [0], given: 1

Re: Interesting problems of Permutations and Combinations [#permalink] New post 19 May 2010, 07:13
Thank you very much. That is an awesome piece of explanation.
Senior Manager
Senior Manager
User avatar
Joined: 30 Nov 2010
Posts: 264
Schools: UC Berkley, UCLA
Followers: 1

Kudos [?]: 54 [0], given: 66

Re: Interesting problems of Permutations and Combinations [#permalink] New post 31 Jan 2011, 16:31
Why 7!? There are only six letters to arrange...
_________________

Thank you for your kudoses Everyone!!!


"It always seems impossible until its done."
-Nelson Mandela

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 19052
Followers: 3371

Kudos [?]: 24534 [1] , given: 2680

Re: Interesting problems of Permutations and Combinations [#permalink] New post 31 Jan 2011, 16:45
1
This post received
KUDOS
Expert's post
mariyea wrote:
Why 7!? There are only six letters to arrange...


Are you talking about Q1, 4th point? Can you please be more specific when asking questions?

4. Permutations of the 7 units {P(S)XXXXS(P)}{X}{X}{X}{X}{X}{X} = 7! = 5040;

There are 7 units: {PXXXXS}, {X}, {X}, {X}, {X}, {X}, {X} --> 6 letters in unit 1, plus 6 units with one letter in each = total of 12 letters.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 30 Nov 2010
Posts: 264
Schools: UC Berkley, UCLA
Followers: 1

Kudos [?]: 54 [0], given: 66

Re: Interesting problems of Permutations and Combinations [#permalink] New post 01 Feb 2011, 06:07
Bunuel wrote:
mariyea wrote:
Why 7!? There are only six letters to arrange...


Are you talking about Q1, 4th point? Can you please be more specific when asking questions?

4. Permutations of the 7 units {P(S)XXXXS(P)}{X}{X}{X}{X}{X}{X} = 7! = 5040;

There are 7 units: {PXXXXS}, {X}, {X}, {X}, {X}, {X}, {X} --> 6 letters in unit 1, plus 6 units with one letter in each = total of 12 letters.


Yes I am referring to the first q. Sorry about that.

But the q asks for four letters to be placed b/n P and S... and the ways in which the four letters can be arranged is expressed by 4!
How can there be six units that have one letter each?
_________________

Thank you for your kudoses Everyone!!!


"It always seems impossible until its done."
-Nelson Mandela

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 19052
Followers: 3371

Kudos [?]: 24534 [1] , given: 2680

Re: Interesting problems of Permutations and Combinations [#permalink] New post 01 Feb 2011, 06:26
1
This post received
KUDOS
Expert's post
mariyea wrote:
Yes I am referring to the first q. Sorry about that.

But the q asks for four letters to be placed b/n P and S... and the ways in which the four letters can be arranged is expressed by 4!
How can there be six units that have one letter each?


It seems that you don't understand what the question is asking. It does not ask about the ways 4 lettter can be arranged between P and S.

The question is: in how many ways can the word PERMUTATIONS be arranged SO THAT in each arrangement there are always 4 letters between P and S.

This should be calculated in several steps. Step 4 is dealing with arrangement of 7 units: P and S with 4 letters between them (as required) is one unit {PXXXXS} so we used 6 letters, EACH of the rest 6 letters is a separate unit itself so we have total of 7 units: {PXXXXS}, {X}, {X}, {X}, {X}, {X}, {X} --> 7!.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 30 Nov 2010
Posts: 264
Schools: UC Berkley, UCLA
Followers: 1

Kudos [?]: 54 [0], given: 66

Re: Interesting problems of Permutations and Combinations [#permalink] New post 01 Feb 2011, 06:39
Bunuel wrote:
mariyea wrote:
Yes I am referring to the first q. Sorry about that.

But the q asks for four letters to be placed b/n P and S... and the ways in which the four letters can be arranged is expressed by 4!
How can there be six units that have one letter each?


It seems that you don't understand what the question is asking. It does not ask about the ways 4 lettter can be arranged between P and S.

The question is: in how many ways can the word PERMUTATIONS be arranged SO THAT in each arrangement there are always 4 letters between P and S.

This should be calculated in several steps. Step 4 is dealing with arrangement of 7 units: P and S with 4 letters between them (as required) is one unit {PXXXXS} so we used 6 letters, EACH of the rest 6 letters is a separate unit itself so we have total of 7 units: {PXXXXS}, {X}, {X}, {X}, {X}, {X}, {X} --> 7!.


Bunuel, Bunuel! Thank you so much! I get it now, you're the man!
_________________

Thank you for your kudoses Everyone!!!


"It always seems impossible until its done."
-Nelson Mandela

Manager
Manager
avatar
Joined: 27 Jul 2010
Posts: 197
Location: Prague
Schools: University of Economics Prague
Followers: 1

Kudos [?]: 15 [0], given: 15

GMAT ToolKit User GMAT Tests User
Re: Interesting problems of Permutations and Combinations [#permalink] New post 03 Feb 2011, 02:42
Bunuel wrote:
chandrun wrote:
Here a couple of problems I encountered. Let me know your views on them. They may not necessarily be of GMAT format. Please share your views, nevertheless.

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

Cheers


THEORY:

Permutations of n things of which P_1 are alike of one kind, P_2 are alike of second kind, P_3 are alike of third kind ... P_r are alike of r_{th} kind such that: P_1+P_2+P_3+..+P_r=n is:

\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}.

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \frac{6!}{2!2!}, as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \frac{9!}{4!3!2!}.

Back to the original questions:

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

There are 12 letters in the word "PERMUTATIONS", out of which T is repeated twice.

1. Choosing 4 letters out of 10 (12-2(P and S)=10) to place between P and S = 10C4 = 210;
2. Permutation of the letters P ans S (PXXXXS or SXXXXP) = 2! =2;
3. Permutation of the 4 letters between P and S = 4! =24;
4. Permutations of the 7 units {P(S)XXXXS(P)}{X}{X}{X}{X}{X}{X} = 7! = 5040;
5. We should divide multiplication of the above 4 numbers by 2! as there is repeated T.

Hence: \frac{10C4*2!*4!*7!}{2!}=25,401,600

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

There are 11 letters in the word "MISSISSIPPI ", out of which: M=1, I=4, S=4, P=2.

Total # of permutations is \frac{11!}{4!4!2!};
# of permutations with 4 I's together is \frac{8!}{4!2!}. Consider 4 I's as one unit: {M}{S}{S}{S}{S}{P}{P}{IIII} - total 8 units, out of which {M}=1, {S}=4, {P}=2, {IIII}=1.

So # of permutations with 4 I's not come together is: \frac{11!}{4!4!2!}-\frac{8!}{4!2!}.

Hope it helps.



What about my approach to PERMUTATIONS?

The word permutations consists of 12 letters.
You can choose P and S in 7*2 ways so there are always 4 numbers between them
P on first, S on fifth ........ P on seventh S on twelwth + reversely (SP)

You are left with 10 letters, 2 of which are the same (TT)

So the complete formula is:

7*2*\frac{10!}{2!}=7*10!

It makes the same result, but I think is a bit quicker.
_________________

You want somethin', go get it. Period!

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 19052
Followers: 3371

Kudos [?]: 24534 [0], given: 2680

Re: Interesting problems of Permutations and Combinations [#permalink] New post 03 Feb 2011, 02:48
Expert's post
craky wrote:
Bunuel wrote:
chandrun wrote:
Here a couple of problems I encountered. Let me know your views on them. They may not necessarily be of GMAT format. Please share your views, nevertheless.

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

Cheers


THEORY:

Permutations of n things of which P_1 are alike of one kind, P_2 are alike of second kind, P_3 are alike of third kind ... P_r are alike of r_{th} kind such that: P_1+P_2+P_3+..+P_r=n is:

\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}.

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \frac{6!}{2!2!}, as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \frac{9!}{4!3!2!}.

Back to the original questions:

1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

There are 12 letters in the word "PERMUTATIONS", out of which T is repeated twice.

1. Choosing 4 letters out of 10 (12-2(P and S)=10) to place between P and S = 10C4 = 210;
2. Permutation of the letters P ans S (PXXXXS or SXXXXP) = 2! =2;
3. Permutation of the 4 letters between P and S = 4! =24;
4. Permutations of the 7 units {P(S)XXXXS(P)}{X}{X}{X}{X}{X}{X} = 7! = 5040;
5. We should divide multiplication of the above 4 numbers by 2! as there is repeated T.

Hence: \frac{10C4*2!*4!*7!}{2!}=25,401,600

2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

There are 11 letters in the word "MISSISSIPPI ", out of which: M=1, I=4, S=4, P=2.

Total # of permutations is \frac{11!}{4!4!2!};
# of permutations with 4 I's together is \frac{8!}{4!2!}. Consider 4 I's as one unit: {M}{S}{S}{S}{S}{P}{P}{IIII} - total 8 units, out of which {M}=1, {S}=4, {P}=2, {IIII}=1.

So # of permutations with 4 I's not come together is: \frac{11!}{4!4!2!}-\frac{8!}{4!2!}.

Hope it helps.



What about my approach to PERMUTATIONS?

The word permutations consists of 12 letters.
You can choose P and S in 7*2 ways so there are always 4 numbers between them
P on first, S on fifth ........ P on seventh S on twelwth + reversely (SP)

You are left with 10 letters, 2 of which are the same (TT)

So the complete formula is:

7*2*\frac{10!}{2!}=7*10!

It makes the same result, but I think is a bit quicker.


This approach is also correct.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2048
Followers: 128

Kudos [?]: 899 [0], given: 376

GMAT Tests User
Re: Interesting problems of Permutations and Combinations [#permalink] New post 04 Feb 2011, 05:41
1. In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?


PERMUTATIONS:
Total length of the word = 12
Repetitions:
T:2. Rest all letters:1

P,S can occupy following indices in the word
{1,6},{2,7},{3,8},{4,9},{5,10},{6,11},{7,12}

In each of the above positions that P and S occupy, the remaining 10 letters can be arranged in
\frac{10!}{2!} ways

Likewise; S,P can occupy following indices:
{1,6},{2,7},{3,8},{4,9},{5,10},{6,11},{7,12}

In each of the above positions that S and P occupy, the remaining 10 letters can be arranged in
\frac{10!}{2!} ways

So, total number of arrangements:

\frac{7*2*10!}{2!}


2. In how many of the distinct permutations of the letters in the word MISSISSIPPI do the 4 I's not come together?

Word MISSISSIPPI
Length: 11
Repetitions:
I:4
S:4
P:2
M:1

Total number of arrangement possible = \frac{11!}{4!4!2!} ------------Ist

Now, let's conjoin four I's and treat it as a unique character, say #. We have conjoined all fours in order to symbolize that all I's are adhered together.

So, Now MISSISSIPPI becomes M#SSSSPP
Word: M#SSSSPP
Length: 8
Repetitions:
S:4
P:2
M:1
#:1

The number of ways in which I's come together is:
\frac{8!}{2!4!} --------- 2nd

Thus, the number of arrangements in which I's not come together will be the difference between 2nd and Ist

\frac{11!}{4!4!2!}-\frac{8!}{2!4!}
_________________

~fluke

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 08 Nov 2010
Posts: 422
WE 1: Business Development
Followers: 7

Kudos [?]: 33 [0], given: 161

GMAT ToolKit User GMAT Tests User
Re: Interesting problems of Permutations and Combinations [#permalink] New post 05 Feb 2011, 03:59
geeeesh bunuel... amazing explanation.
_________________

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 15 Mar 2013
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 2

Permutations Question [#permalink] New post 05 Jul 2013, 08:35
In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

My approach:

Lets consider P_ _ _ _ S be a single letter.

The total number of letters in PERMUTATIONS = 12

6 letters would be consumed in P_ _ _ _ S, so we have to arrange 7 letters. Hence 7!

Now for the two Ts 7!/2! and for arranging four letters between P and S. (7!/2!) 4!

Is this the right solution? I am not sure if additional multiplication should be done for selecting these four letters from the remaining 10 letters.

Any help is much appreciated.

Thanks,
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 19052
Followers: 3371

Kudos [?]: 24534 [0], given: 2680

Re: Permutations Question [#permalink] New post 05 Jul 2013, 08:38
Expert's post
ParmarKarishma wrote:
In how many ways can the letters of the word PERMUTATIONS be arranged if there are always 4 letters between P and S?

My approach:

Lets consider P_ _ _ _ S be a single letter.

The total number of letters in PERMUTATIONS = 12

6 letters would be consumed in P_ _ _ _ S, so we have to arrange 7 letters. Hence 7!

Now for the two Ts 7!/2! and for arranging four letters between P and S. (7!/2!) 4!

Is this the right solution? I am not sure if additional multiplication should be done for selecting these four letters from the remaining 10 letters.

Any help is much appreciated.

Thanks,


Merging topics. Please refer to the solutions above and ask if anything remains unclear.

Also, please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Pay attention to the rule #3. Thank you.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2108
Followers: 180

Kudos [?]: 35 [0], given: 0

Premium Member
Re: In how many ways can the letters of the word PERMUTATIONS be [#permalink] New post 17 Jul 2014, 21:08
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: In how many ways can the letters of the word PERMUTATIONS be   [#permalink] 17 Jul 2014, 21:08
    Similar topics Author Replies Last post
Similar
Topics:
5 Experts publish their posts in the topic In how many ways can the letters of the word PERMUTATIONS be abhijit_sen 7 26 Mar 2008, 16:13
In how many ways can the letters of the word ARRANGE be chillpill 5 12 Apr 2006, 19:12
In how many different ways can the letters in the word rlevochkin 5 19 Jan 2006, 10:54
In how many ways can the letters of the word double be Dan 5 31 May 2005, 22:40
In how many ways can the letters of the word EDUCATION be Antmavel 15 13 Mar 2005, 18:14
Display posts from previous: Sort by

In how many ways can the letters of the word PERMUTATIONS be

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.