Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

area of middle part (quad) = B * h (6 - 2√3) * 2 = 12 - 4√3

aren't we solving what's inside the parentheses first? 6 - 2√3 = 4√3 4√3 * 2 = 8√3 should we be using the distributive property here?

6 - 2√3 does not = to 4√3!!
6√3 - 2√3 = 4√3
use a calculator and you will see the difference
and i did use distributive property
(6 - 2√3) * 2 =
6*2 - 2√3*2 =
12 - 4√3

this is how i got 12 by finding the 3 subparts (by drawing two lines to create two triangles and quadrilateral):

30:60:90 x: √3: 2x 2: 2√3: 4

Is it mandatory to mug up this rule regarding 30:60:90 triangle? No other ways of solving this problem? Isn't it correct that opposite sides of angles 30 and 60 are in ratio 1:2?

this is how i got 12 by finding the 3 subparts (by drawing two lines to create two triangles and quadrilateral):

30:60:90 x: √3: 2x 2: 2√3: 4

Is it mandatory to mug up this rule regarding 30:60:90 triangle? No other ways of solving this problem? Isn't it correct that opposite sides of angles 30 and 60 are in ratio 1:2?

Any help is appreciated.

• A right triangle where the angles are 30°, 60°, and 90°.

This is one of the 'standard' triangles you should be able recognize on sight. A fact you should commit to memory is: The sides are always in the ratio 1 : \sqrt{3}: 2. Notice that the smallest side (1) is opposite the smallest angle (30°), and the longest side (2) is opposite the largest angle (90°).

BACK TO THE ORIGINAL QUESTION:

Now, as hypotenuse PQ (the largest side) equals to 4 then the side opposite 30 degrees (smallest side, which is also the height of the parallelogram) equals to 4/2=2. Thus area of parallelogram is height*base=2*6=12.

Answer: B.

For more on this issues check Triangles chapter of Math Book (link in my signature).

Are we supposed to remeber the corelations for the standard triangles

Yes, I think it's good to know below 2 cases:

• A right triangle where the angles are 30°, 60°, and 90°.

This is one of the 'standard' triangles you should be able recognize on sight. A fact you should commit to memory is: The sides are always in the ratio 1 : \sqrt{3}: 2. Notice that the smallest side (1) is opposite the smallest angle (30°), and the longest side (2) is opposite the largest angle (90°).

• A right triangle where the angles are 45°, 45°, and 90°.

This is one of the 'standard' triangles you should be able recognize on sight. A fact you should also commit to memory is: The sides are always in the ratio 1 : 1 : \sqrt{2}. With the \sqrt{2} being the hypotenuse (longest side). This can be derived from Pythagoras' Theorem. Because the base angles are the same (both 45°) the two legs are equal and so the triangle is also isosceles. • Area of a 45-45-90 triangle. As you see from the figure above, two 45-45-90 triangles together make a square, so the area of one of them is half the area of the square. As a formula A=\frac{S^2}{2}. Where S is the length of either short side.

For more on this issues check Triangles chapter of Math Book (link in my signature).

Hey everyone, today’s post focuses on the interview process. As I get ready for interviews at Kellogg and Tuck (and TheEngineerMBA ramps up for his HBS... ...

I couldn’t help myself but stay impressed. young leader who can now basically speak Chinese and handle things alone (I’m Korean Canadian by the way, so...