Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
In racing over a given distance d at uniform speed, A can be [#permalink]
09 Jul 2012, 02:42
8
This post received KUDOS
Expert's post
24
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
95% (hard)
Question Stats:
43% (04:02) correct
57% (02:07) wrong based on 645 sessions
In racing over a given distance d at uniform speed, A can beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
09 Jul 2012, 03:24
23
This post received KUDOS
Expert's post
10
This post was BOOKMARKED
carcass wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line B is 8 yards ahead of C, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
09 Jul 2012, 06:14
7
This post received KUDOS
Bunuel wrote:
carcass wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Answer: C.
Hope it's clear.
Hi Can we also resolve by comparing time taken, i.e. d/a=(d-20)/b d/b=(d-10)/c d/a=(d-28)/c
we can resolve d=100 from these eqn.. _________________
Best Vaibhav
If you found my contribution helpful, please click the +1 Kudos button on the left, Thanks
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
20 Jul 2012, 19:39
I want to ask bunnel how did he get this " 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards.." can you pls explain a bit in detail. thanks
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
22 Jul 2012, 02:19
1
This post received KUDOS
Expert's post
hardwoker1010 wrote:
I want to ask bunnel how did he get this " 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards.." can you pls explain a bit in detail. thanks
Consider the case when A, B and C are racing each other. When A is on the finish line B must be 20 yards from the finish line and C must be 28 yards from the finish line. Hence when B is 20 yards from the finish line he's 28-20=8 yards ahead of C.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
23 Jul 2012, 23:58
Bunuel wrote:
carcass wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Answer: C.
Hope it's clear.
Hi Bunnel,
Can you please explain this part?
since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards. _________________
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
27 Jun 2013, 16:50
11
This post received KUDOS
3
This post was BOOKMARKED
1. When A touches d, B is at d-20 and C is at d-28 2. When B completes d, C completes d-10 3. Equate d-20 / d-28 = d / d-10 because the ratio of the speed of B to the speed of C is a constant. 4. d= 100 _________________
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
04 Jul 2013, 09:44
2
This post received KUDOS
1
This post was BOOKMARKED
Think it into a other way. 1) When A completes, B is 20 Behind and C is 28 Behind. C is 8 behind B. 2) When B completes, C is 10 Behind.
What it refers is that in last 20 yards B has gained 2 yards, which refers that B is gaining 1 yard over C in every 10 yard it covers, so in last 80 yards it has gained 8 yards, so total is 80+20 = 100 :D
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
03 Aug 2013, 11:16
2
This post received KUDOS
1
This post was BOOKMARKED
In racing over a given distance d at uniform speed, A can beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
We are given nothing about time and nothing about rate. Solving using a traditional formula (i.e. distance = rate*time) might be difficult. Is that correct?
A must be 28 yards ahead of C. We know that A beats both B and C.
When A hits the finish line, it is 20 yards ahead of B and 28 yards ahead of C. This means at this time B is 8 yards ahead of C but it beats C by 10 yards. In 20 yards, it has to gain a two further yards between itself and C. Because A, B, C travel at a constant rate, B gains on C by 2 yards every 20 yards. This means that when B and C started out they were even and after 20 yards B was two ahead of C, after 40 yards B was 4 ahead of C, etc. B would have to travel 100 yards for it to gain 10 yards on C.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
16 Aug 2013, 02:13
2
This post received KUDOS
Another method to solve such questions : Let us consider the case when all three are racing each other. A is ahead of B by 20 yards at the finish and ahead of c by 28 yards, which means B is ahead of C by 8 yards at that instant. Now B defeats C by 10 yards, means the duration during which B covered 20, C covered 8+10=18. Hence, the ratio of their speeds is 10:9. That means in a race of 10yards B defeats c by 1 yard , so to defeat him by 10 yards the race should be of 10x10 =100 yards.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
10 Jan 2014, 06:04
SravnaTestPrep wrote:
1. When A touches d, B is at d-20 and C is at d-28 2. When B completes d, C completes d-10 3. Equate d-20 / d-28 = d / d-10 because the ratio of the speed of B to the speed of C is a constant. 4. d= 100
Hi Sravna,
I dont follow how the ratio of the speeds are constant? what about the time factor while equating? as per the discussions in the various for this questions here it is re-iterated time and again that B gains 2 yards in the last 20 yards? if that is the case how can the speed ratios be constant?
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
18 Jan 2014, 22:47
rawjetraw wrote:
SravnaTestPrep wrote:
1. When A touches d, B is at d-20 and C is at d-28 2. When B completes d, C completes d-10 3. Equate d-20 / d-28 = d / d-10 because the ratio of the speed of B to the speed of C is a constant. 4. d= 100
Hi Sravna,
I dont follow how the ratio of the speeds are constant? what about the time factor while equating? as per the discussions in the various for this questions here it is re-iterated time and again that B gains 2 yards in the last 20 yards? if that is the case how can the speed ratios be constant?
please help. confused
Hi Bunuel,
could you please your insight on this solution? I haven't received a reply from Sravna. Thanks!
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
13 May 2014, 08:28
narangvaibhav wrote:
Bunuel wrote:
carcass wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Answer: C.
Hope it's clear.
Hi Can we also resolve by comparing time taken, i.e. d/a=(d-20)/b d/b=(d-10)/c d/a=(d-28)/c
we can resolve d=100 from these eqn..
You can'tresolve this..... 3equation and four variables....need one more equation here _________________
May everyone succeed in their endeavor. God Bless!!!
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
18 May 2014, 03:39
1
This post was BOOKMARKED
rawjetraw wrote:
rawjetraw wrote:
SravnaTestPrep wrote:
1. When A touches d, B is at d-20 and C is at d-28 2. When B completes d, C completes d-10 3. Equate d-20 / d-28 = d / d-10 because the ratio of the speed of B to the speed of C is a constant. 4. d= 100
Hi Sravna,
I dont follow how the ratio of the speeds are constant? what about the time factor while equating? as per the discussions in the various for this questions here it is re-iterated time and again that B gains 2 yards in the last 20 yards? if that is the case how can the speed ratios be constant?
please help. confused
Hi Bunuel,
could you please your insight on this solution? I haven't received a reply from Sravna. Thanks!
Lemme try and explain.
In a given times A runs d, B runs d-20, and C runs d-28. Since the time is same their speed a, b, c are in the ratio of the distance the travelled Thus a:b:c = d:d-20:d-28 Also, we know that b:c= d: d-10
Thus, equating b:c in both the cases, we get
d-20/d-28 = d/d-10
Solving this we get d= 100.
A more intuitive approach has been given by Bunuel in this tread. The approach works as the speeds are constant and are in direct proportion with the distance if time traveled is same.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
18 May 2014, 03:46
enders wrote:
narangvaibhav wrote:
Bunuel wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Answer: C.
Hope it's clear. Hi Can we also resolve by comparing time taken, i.e. d/a=(d-20)/b d/b=(d-10)/c d/a=(d-28)/c
we can resolve d=100 from these eqn..
You can'tresolve this..... 3equation and four variables....need one more equation here
You can resolve this very easily. Also, we don't need to find all the four variables. We can't find the speed of a, b and c individually as we don't know about the distance
The first one can be written as a/b = d/d-20 second one is b/c = d/d-10
Multiplying these two yeilds a/c = d^2/(d-10)(d-20)
Third one also says a/c = d/d-28
We equate these 2 and get the result as 100. A more intuitive way has been already discusses. You should use that way.
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
17 Jun 2014, 01:07
1
This post was BOOKMARKED
rawjetraw wrote:
SravnaTestPrep wrote:
1. When A touches d, B is at d-20 and C is at d-28 2. When B completes d, C completes d-10 3. Equate d-20 / d-28 = d / d-10 because the ratio of the speed of B to the speed of C is a constant. 4. d= 100
Hi Sravna,
I dont follow how the ratio of the speeds are constant? what about the time factor while equating? as per the discussions in the various for this questions here it is re-iterated time and again that B gains 2 yards in the last 20 yards? if that is the case how can the speed ratios be constant?
please help. confused
Hi,
Very sorry for such a late reply.
Let us say that B travels a distance x and in the same time C travels distance y. The ratio of the distance = x/y. This is also the ratio of their speed since time is the same.
In the actual problem we have this ratio as d-20/d-28. This gives the ratio of their speed.
Similarly when B reaches d, c reaches d-10. The time taken by both to reach the respective distance is the same. This d/d-10 also gives the ratio of the speed of B and C. Thus we can equate the two and find d. _________________
Re: In racing over a given distance d at uniform speed, A can be [#permalink]
18 Jun 2014, 05:27
Bunuel wrote:
carcass wrote:
In racing over a given distance d at uniform speed, A can be beat B by 20 yards, B can beat C by 10 yards, and A can beat C by 28 yards. Then d, in yards, equal
A. not determined by the give information B. 58 C. 100 D. 116 E. 120
Given: A can beat B by 20 yards, A can beat C by 28 yards, B can beat C by 10 yards,
So, when A is on the finish line B is 20 yards back and C is 28 yards back.
Hence, 20 yards before the finish line C is 8 yards ahead of B, and since the final difference between B and C is 10 yards, then B gains 2 yards every 20 yard. To gain the final difference of 10=2*5 yards B should run total of 20*5=100 yards.
Answer: C.
Hope it's clear.
Bunuel how can C be ahead of B unless I am missing something !!
gmatclubot
Re: In racing over a given distance d at uniform speed, A can be
[#permalink]
18 Jun 2014, 05:27
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...