In the coordinate plane, the points F (-2,1), G (1,4), and H : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 20 Jan 2017, 13:48

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In the coordinate plane, the points F (-2,1), G (1,4), and H

Author Message
TAGS:

### Hide Tags

Manager
Joined: 13 Jul 2010
Posts: 169
Followers: 1

Kudos [?]: 73 [0], given: 7

In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

21 Nov 2010, 18:47
12
This post was
BOOKMARKED
00:00

Difficulty:

25% (medium)

Question Stats:

75% (02:25) correct 25% (01:21) wrong based on 382 sessions

### HideShow timer Statistics

In the coordinate plane, the points F (-2,1), G (1,4), and H (4,1) lie on a circle with center P. What are the coordinates of point P ?

A. (0,0)
B. (1,1)
C. (1,2)
D. (1,-2)
E. (2.5, -2.5)
[Reveal] Spoiler: OA

Last edited by Bunuel on 10 Jul 2012, 03:29, edited 1 time in total.
Edited the question.
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2137

Kudos [?]: 13673 [7] , given: 222

Re: belly of the circle [#permalink]

### Show Tags

21 Nov 2010, 20:23
7
KUDOS
Expert's post
2
This post was
BOOKMARKED
gettinit wrote:
In the coordinate plane, the points F (-2,1), G (1,4),
and H (4,1) lie on a circle with center P. What are the
coordinates of point P ?
(A) (0,0)
(B) (1,1)
(C) (1,2)
(D) (1,-2)
(E) (2.5, (-2.5)

Remember that center of the circle is equidistant from any point ont he circle. This distance is of course the radius of the circle.
The fastest method here is to use the options to see which point is equidistant from F (-2,1), G (1,4) and H (4,1).
Formula for distance between two points is given by $$\sqrt{(x1 - x2)^2 + (y1 - y2)^2}$$

I see that (0, 0) will not be equidistant from the given 3 points.
But distance of (1, 1) from (-2, 1) is $$\sqrt{(-2 - 1)^2 + (1 - 1)^2}$$ = 3
Distance of (1, 1) from (1, 4) is $$\sqrt{(1 - 1)^2 + (1 - 4)^2}$$ = 3
Distance of (1, 1) from (4, 1) is $$\sqrt{(4 - 1)^2 + (1 - 1)^2}$$ = 3

The co-ordinates of the center of the circle, P, must be (1, 1).

(What I actually did was plotted the points on the xy axis and then saw that (1, 1) will be equidistant from all three points because (-2, 1) lies directly 3 steps to its left, (1, 4) lies directly 3 steps above it and (4, 1) lies directly 3 steps to its right.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Senior Manager Joined: 20 Apr 2010 Posts: 250 Location: Hyderabad WE 1: 4.6 years Exp IT prof Followers: 8 Kudos [?]: 25 [0], given: 51 Re: belly of the circle [#permalink] ### Show Tags 22 Nov 2010, 10:55 Got it wrong because didn't read the question correctly I thought I need to find the 4th point that would lie on the circle Hence my answer was D (1,-2) But the the center of the circle will lie on (1,1) _________________ I will give a Fight till the End "To dream anything that you want to dream, that is the beauty of the human mind. To do anything that you want to do, that is the strength of the human will. To trust yourself, to test your limits, that is the courage to succeed." - Bernard Edmonds A person who is afraid of Failure can never succeed -- Amneet Padda Don't Forget to give the KUDOS Manager Joined: 13 Jul 2010 Posts: 169 Followers: 1 Kudos [?]: 73 [0], given: 7 Re: belly of the circle [#permalink] ### Show Tags 23 Nov 2010, 18:39 VeritasPrepKarishma wrote: gettinit wrote: In the coordinate plane, the points F (-2,1), G (1,4), and H (4,1) lie on a circle with center P. What are the coordinates of point P ? (A) (0,0) (B) (1,1) (C) (1,2) (D) (1,-2) (E) (2.5, (-2.5) Remember that center of the circle is equidistant from any point ont he circle. This distance is of course the radius of the circle. The fastest method here is to use the options to see which point is equidistant from F (-2,1), G (1,4) and H (4,1). Formula for distance between two points is given by $$\sqrt{(x1 - x2)^2 + (y1 - y2)^2}$$ I see that (0, 0) will not be equidistant from the given 3 points. But distance of (1, 1) from (-2, 1) is $$\sqrt{(-2 - 1)^2 + (1 - 1)^2}$$ = 3 Distance of (1, 1) from (1, 4) is $$\sqrt{(1 - 1)^2 + (1 - 4)^2}$$ = 3 Distance of (1, 1) from (4, 1) is $$\sqrt{(4 - 1)^2 + (1 - 1)^2}$$ = 3 The co-ordinates of the center of the circle, P, must be (1, 1). (What I actually did was plotted the points on the xy axis and then saw that (1, 1) will be equidistant from all three points because (-2, 1) lies directly 3 steps to its left, (1, 4) lies directly 3 steps above it and (4, 1) lies directly 3 steps to its right. Thanks Karishma I also drew it out, and solved that way. But knowing the distance forumla is key. Thank you! Manager Joined: 13 Jul 2010 Posts: 169 Followers: 1 Kudos [?]: 73 [0], given: 7 Re: belly of the circle [#permalink] ### Show Tags 23 Nov 2010, 18:39 amneetpadda wrote: Got it wrong because didn't read the question correctly I thought I need to find the 4th point that would lie on the circle Hence my answer was D (1,-2) But the the center of the circle will lie on (1,1) Did you find the alternate point using the distance formula as well? thanks. Intern Joined: 25 Nov 2009 Posts: 46 Location: India Followers: 3 Kudos [?]: 4 [0], given: 8 Re: belly of the circle [#permalink] ### Show Tags 23 Nov 2010, 21:05 a very calculation oriented question.... Is there a way of choosing the option to first check, or we should take options in sequential order only... _________________ When going gets tough, tough gets going......... Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7125 Location: Pune, India Followers: 2137 Kudos [?]: 13673 [1] , given: 222 Re: belly of the circle [#permalink] ### Show Tags 24 Nov 2010, 05:03 1 This post received KUDOS Expert's post 1 This post was BOOKMARKED puneetpratik wrote: a very calculation oriented question.... Is there a way of choosing the option to first check, or we should take options in sequential order only... Actually, the only points that will be equidistant from (1, 4) and (4, 1) are (0, 0) and (1, 1) (points where x and y co-ordinates are same. I will explain why in a minute). When I plot these points on the co-ordinate axis, I see (0, 0) is way too close to (-2, 1). I also see that (1, 1) is perfect because each point is a distance 3 away, either horizontally or vertically. The diagram will show you what I mean: Attachment: Ques.jpg [ 8.26 KiB | Viewed 10409 times ] All three colored lines show the distance. Even with a rough sketch, it is apparent. Now, back to 'why only (0, 0) and (1, 1) are possible candidates'. Look at the diagram above. The points (4, 1) and (1, 4) are mirror images of each other (reflected along the line y = x ). Their x and y co-ordinates are interchanged. These points will be equidistant only from a point lying on y = x i.e. a point whose x and y co-ordinates are the same. So the calculations actually required in the question are nil. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Senior Manager
Joined: 15 Sep 2009
Posts: 271
GMAT 1: 750 Q V
Followers: 10

Kudos [?]: 69 [2] , given: 6

Re: belly of the circle [#permalink]

### Show Tags

10 Jul 2012, 03:14
2
KUDOS
Plug and chug, guys. The answer options contain many small integers that one can easily manipulate in calculations.

Alternatively, one can solve it algebraically:

Using formula (finding the distance between two points) where x and y are the coordinates of center P. Left side of equation finds the distance between F and P, and right side finds that between G and P. Since both distance are equal (ie. they are both radii), we can equate them thus:

(x- -2)^2 + (y-1)^2 = (x-1)^2 + (y-1)^2

-----> x+y=2 Only option B has x and y that satisfy this resultant equation.

Cheers,
Der alte Fritz.
_________________

+1 Kudos me - I'm half Irish, half Prussian.

Manager
Status: Trying.... & desperate for success.
Joined: 17 May 2012
Posts: 78
Location: India
Schools: NUS '15
GMAT 1: Q33 V27
GPA: 2.92
WE: Analyst (Computer Software)
Followers: 0

Kudos [?]: 76 [0], given: 61

Re: belly of the circle [#permalink]

### Show Tags

02 Aug 2012, 09:49
VeritasPrepKarishma wrote:
gettinit wrote:
In the coordinate plane, the points F (-2,1), G (1,4),
and H (4,1) lie on a circle with center P. What are the
coordinates of point P ?
(A) (0,0)
(B) (1,1)
(C) (1,2)
(D) (1,-2)
(E) (2.5, (-2.5)

Remember that center of the circle is equidistant from any point ont he circle. This distance is of course the radius of the circle.
The fastest method here is to use the options to see which point is equidistant from F (-2,1), G (1,4) and H (4,1).
Formula for distance between two points is given by $$\sqrt{(x1 - x2)^2 + (y1 - y2)^2}$$

I see that (0, 0) will not be equidistant from the given 3 points.
But distance of (1, 1) from (-2, 1) is $$\sqrt{(-2 - 1)^2 + (1 - 1)^2}$$ = 3
Distance of (1, 1) from (1, 4) is $$\sqrt{(1 - 1)^2 + (1 - 4)^2}$$ = 3
Distance of (1, 1) from (4, 1) is $$\sqrt{(4 - 1)^2 + (1 - 1)^2}$$ = 3

The co-ordinates of the center of the circle, P, must be (1, 1).

(What I actually did was plotted the points on the xy axis and then saw that (1, 1) will be equidistant from all three points because (-2, 1) lies directly 3 steps to its left, (1, 4) lies directly 3 steps above it and (4, 1) lies directly 3 steps to its right.

Can a solution be figured without plotting the points?
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2137

Kudos [?]: 13673 [2] , given: 222

Re: belly of the circle [#permalink]

### Show Tags

02 Aug 2012, 10:50
2
KUDOS
Expert's post
navigator123 wrote:
Can a solution be figured without plotting the points?

Pure algebraic solution: (which I don't recommend but since you asked...)

Let the center be (x, y). Distance of each of the three points from the center will be the same.

$$\sqrt{(-2 - x)^2 + (1 - y)^2} = \sqrt{(1 - x)^2 + (4 - y)^2}$$
4x + 4 + 1 - 2y = 1 - 2x + 16 - 8y
6x + 6y - 12 = 0
x + y - 2 = 0 .......(I)

$$\sqrt{(4 - x)^2 + (1 - y)^2} = \sqrt{(1 - x)^2 + (4 - y)^2}$$
16 - 8x + 1 - 2y = 1 - 2x + 16 - 8y
6x - 6y = 0
x - y = 0 ........(II)

Solving (I) and (II)
x = 1, y = 1
Center is (1, 1)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Director Joined: 22 Mar 2011 Posts: 612 WE: Science (Education) Followers: 100 Kudos [?]: 891 [0], given: 43 Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink] ### Show Tags 02 Aug 2012, 14:03 1 This post was BOOKMARKED gettinit wrote: In the coordinate plane, the points F (-2,1), G (1,4), and H (4,1) lie on a circle with center P. What are the coordinates of point P ? A. (0,0) B. (1,1) C. (1,2) D. (1,-2) E. (2.5, -2.5) FH is parallel to the X-axis (they both have the same y coordinate). Let's denote by M the middle point of the line segment FH. Then M has coordinates (1, 1) = ((-2+4)/2 =1, 1). Because G has its x coordinate 1, the same as that of M, it means that GM is perpendicular to FH (being parallel to the Y-axis) . It follows that the triangle FGH is isosceles, and because FM = MH = GM = 3, it is a right isosceles triangle. Therefore, FH is the diameter of the circumscribed circle, so in fact M is P. Another approach would be to prove that FG is perpendicular to GH (using the slopes). It is quite straightforward to compute them, you will get 1 and -1. Then, immediately, it follows that the triangle is a right triangle, so then P is the middle of FH. Answer B Note: on the GMAT, you will never be asked to find the center of the circle circumscribed to a non-special triangle. In the above type of questions, look for the right or maybe equilateral triangle. _________________ PhD in Applied Mathematics Love GMAT Quant questions and running. Senior Manager Status: Prevent and prepare. Not repent and repair!! Joined: 13 Feb 2010 Posts: 274 Location: India Concentration: Technology, General Management GPA: 3.75 WE: Sales (Telecommunications) Followers: 9 Kudos [?]: 89 [0], given: 282 Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink] ### Show Tags 07 Aug 2012, 22:22 The points (-2,1) and (4,1) form the diameter of the circle. So the center lies somewhere between these two points. Since y coordinate does not change we need to see where the X co-ordinate falls. It becomes clear that 1 is the x co-ordinate. So the point is (1,1). @veritasKarishma- Do you think this approach will work always?? _________________ I've failed over and over and over again in my life and that is why I succeed--Michael Jordan Kudos drives a person to better himself every single time. So Pls give it generously Wont give up till i hit a 700+ Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7125 Location: Pune, India Followers: 2137 Kudos [?]: 13673 [0], given: 222 Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink] ### Show Tags 08 Aug 2012, 03:14 rajathpanta wrote: The points (-2,1) and (4,1) form the diameter of the circle. So the center lies somewhere between these two points. Since y coordinate does not change we need to see where the X co-ordinate falls. It becomes clear that 1 is the x co-ordinate. So the point is (1,1). @veritasKarishma- Do you think this approach will work always?? We know that the three points lie on the same circle but we don't know that (-2,1) and (4,1) form the diameter of the circle. The given 3 points could be any 3 points on the circle. So no, given some different values, this approach may not work. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 891 [2] , given: 43

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

08 Aug 2012, 05:29
2
KUDOS
VeritasPrepKarishma wrote:
rajathpanta wrote:
The points (-2,1) and (4,1) form the diameter of the circle. So the center lies somewhere between these two points. Since y coordinate does not change we need to see where the X co-ordinate falls. It becomes clear that 1 is the x co-ordinate. So the point is (1,1).

@veritasKarishma- Do you think this approach will work always??

We know that the three points lie on the same circle but we don't know that (-2,1) and (4,1) form the diameter of the circle. The given 3 points could be any 3 points on the circle. So no, given some different values, this approach may not work.

In our case we do know that (-2,1) and (4,1) form the diameter of the circumscribed circle, because FG is perpendicular to GH (we can check by computing the slopes of the lines FG and GH, see my previous post). Two points uniquely determine a diameter, but of course, it depends on the third point whether it is on that specific circle.
A right triangle is inscribed in a circle having its hypotenuse as diameter (inscribed angle of 90 degree is half of the central angle of 180 degree).

What I meant in my previous post was that GMAT will not ask for any non-special triangle to find its circumscribed circle's center. It's no point testing distance computations, besides knowing of course the property of the center. For a right triangle, one has to know about testing perpendicularity using slopes, one has to know that a right angle is inscribed in a half-circle, so the hypotenuse is the diameter...many things to test beside just distance calculation. Similarly, for an equilateral triangle.

Regarding areas as well, I cannot remember GMAT asking for the area of some non-special triangle. Either one can compute the area by adding/subtracting some areas of some other known geometrical shapes or the triangle is special - right, isosceles, equilateral (well, except the easy case when we have a base and the corresponding height explicitly given). GMAT is not testing advanced geometry formulas for areas like Heron's formula, not even 0.5absinC.

That's why I suggest always first test what type of triangle we have.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Intern
Joined: 05 Aug 2012
Posts: 16
Location: United States (CO)
Concentration: Finance, Economics
GMAT Date: 01-15-2014
GPA: 2.62
WE: Research (Investment Banking)
Followers: 0

Kudos [?]: 9 [0], given: 8

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

08 Aug 2012, 12:34
1
This post was
BOOKMARKED
Theoretically couldn't we know that (-2,1) and (4,1) make up the diameter of the circle? Because both points are "on the circle" as the question states, no two points on that axis (where y=1) can be closer or further away, hence it must be the widest part of the circle and the diameter. From there we can solve the midpoint of those two coordinates (making point G unnecessary) so...

(-2+4)/2 = 1 for x

(1+1)/2 = 1 for y

so (1,1) must be the center of that line as well as the circle.
Intern
Joined: 05 Aug 2012
Posts: 16
Location: United States (CO)
Concentration: Finance, Economics
GMAT Date: 01-15-2014
GPA: 2.62
WE: Research (Investment Banking)
Followers: 0

Kudos [?]: 9 [0], given: 8

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

08 Aug 2012, 12:46
Nevermind I see the incredible error in my logic, but once you find their midpoint and see it is equidistant from point G, then you can confirm that it is indeed the midpoint of the entire circle. So point G is not unnecessary as I stated before.
Senior Manager
Status: Prevent and prepare. Not repent and repair!!
Joined: 13 Feb 2010
Posts: 274
Location: India
Concentration: Technology, General Management
GPA: 3.75
WE: Sales (Telecommunications)
Followers: 9

Kudos [?]: 89 [0], given: 282

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

10 Aug 2012, 10:57
bscharm wrote:
Theoretically couldn't we know that (-2,1) and (4,1) make up the diameter of the circle? Because both points are "on the circle" as the question states, no two points on that axis (where y=1) can be closer or further away, hence it must be the widest part of the circle and the diameter. From there we can solve the midpoint of those two coordinates (making point G unnecessary) so...

(-2+4)/2 = 1 for x

(1+1)/2 = 1 for y

so (1,1) must be the center of that line as well as the circle.

Hi,

Even I had the same question. Now I am a little confused. Can anyone explain this concept please!!
_________________

I've failed over and over and over again in my life and that is why I succeed--Michael Jordan
Kudos drives a person to better himself every single time. So Pls give it generously
Wont give up till i hit a 700+

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 891 [0], given: 43

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

10 Aug 2012, 12:37
rajathpanta wrote:
bscharm wrote:
Theoretically couldn't we know that (-2,1) and (4,1) make up the diameter of the circle? Because both points are "on the circle" as the question states, no two points on that axis (where y=1) can be closer or further away, hence it must be the widest part of the circle and the diameter. From there we can solve the midpoint of those two coordinates (making point G unnecessary) so...

(-2+4)/2 = 1 for x

(1+1)/2 = 1 for y

so (1,1) must be the center of that line as well as the circle.

Hi,

Even I had the same question. Now I am a little confused. Can anyone explain this concept please!!

You know that FH is the diameter after you check that FG is perpendicular to GH. Every right triangle is inscribed in a circle with the hypotenuse its diameter. Only a right triangle can be inscribed in a half circle. And if one of the sides of a triangle is a diameter in the circumscribed circle, then the triangle must be a right triangle, and the diameter is its hypotenuse.
Please, refer to my previous posts above.
Attachments

RightTriangleInscribed.jpg [ 18.61 KiB | Viewed 9247 times ]

_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Last edited by EvaJager on 10 Aug 2012, 13:03, edited 2 times in total.
Intern
Joined: 05 Aug 2012
Posts: 16
Location: United States (CO)
Concentration: Finance, Economics
GMAT Date: 01-15-2014
GPA: 2.62
WE: Research (Investment Banking)
Followers: 0

Kudos [?]: 9 [0], given: 8

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

10 Aug 2012, 12:50
EvaJager wrote:
You know that FH is the diameter after you check that FG is perpendicular to GH. Every right triangle is inscribed in a circle with the hypotenuse its diameter.
Please, refer to my previous posts above.

I realized this after I had made my initial post, therefore I agree with your post(s). Also your explanation is much better than mine!
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2137

Kudos [?]: 13673 [0], given: 222

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H [#permalink]

### Show Tags

10 Aug 2012, 21:46
rajathpanta wrote:
bscharm wrote:
Theoretically couldn't we know that (-2,1) and (4,1) make up the diameter of the circle? Because both points are "on the circle" as the question states, no two points on that axis (where y=1) can be closer or further away, hence it must be the widest part of the circle and the diameter. From there we can solve the midpoint of those two coordinates (making point G unnecessary) so...

(-2+4)/2 = 1 for x

(1+1)/2 = 1 for y

so (1,1) must be the center of that line as well as the circle.

Hi,

Even I had the same question. Now I am a little confused. Can anyone explain this concept please!!

It is certainly correct that both points lie on the circle and no points on the circle on y=1 can be closer or farther away. But what says that these points make a diameter and not just a chord smaller than the diameter? If you do find their mid point, you need to check whether the distance from the third point is equal too.
As I said in my first post, you can very easily solve the question by just plotting the points. You can see that all points are equidistant from (1, 1) (Check out a figure I made in a previous post)
As for the distance formula, it is a great little tool for any scenario so it's good to know.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Re: In the coordinate plane, the points F (-2,1), G (1,4), and H   [#permalink] 10 Aug 2012, 21:46

Go to page    1   2    Next  [ 34 posts ]

Similar topics Replies Last post
Similar
Topics:
3 In the coordinate plane, one of the vertices of a square is the point 3 11 Oct 2015, 08:22
14 In the coordinate plane, points (x, 1) and (10, y) 5 17 Nov 2013, 21:36
19 On the coordinate plane , points P and Q are defined by the 14 14 Aug 2013, 13:45
11 On the xy-coordinate plane, point A lies on the y-axis and 6 06 Mar 2013, 10:13
Display posts from previous: Sort by