Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: In the diagram above, the fourteen rectangular tiles are all [#permalink]
11 Mar 2013, 01:32

nave81 wrote:

In the diagram above, the fourteen rectangular tiles are all identical. What percent of the area of rectangle ABCD is covered by the tiles?

(1) ABCD is a square.

(2) EFGH is a square.

Figure attached Suppose the dimention of the tiles are l*b

STAT1 Let side of Square ABCD = a then if you consider side AB then AB = a = 3l + 2b

if you consider side AD then AD = a = 4l

so, 4l = 3l + 2b or, l =2b

Also, we know that a = 4l so, l = a/4 b = l/2 = a/8 So, we can find the area of the tile in terms of "a" Area of all the tiles = (constant)* a^2 So, we can find the percentage of area occupied by tile = ((constant)* a^2 / a^2 ) * 100 So, SUFFICIENT

STAT2 Let side of EFGH = c then if you consider EF then EF = c = 3l

if you consider EH then EH = c = 2l + l-b + l-b = 4l-2b

=> 3l = 4l-2b l = 2b

And we have c = 3l => l = c/3 b = l/2 = c/6

AB = 4l = 4c/3

So, we can find area of ABCD in terms of C And we can find area of the tiles in terms of c So, we can find the percentage of area occupied by tiles So, SUFFICIENT

Re: In the diagram above, the fourteen rectangular tiles are all [#permalink]
03 Oct 2014, 06:30

(1) SUFFICIENT: Let the length (longer dimension) of each rectangular tile be called L, and the width (shorter dimension) of each tile W. Then each horizontal side of square ABCD has total length 2W + 3L, and each vertical side has total length 4L.

Because ABCD is a square, these total lengths must be equal: 2W + 3L = 4L, which reduces to L = 2W. Therefore, each side of square ABCD is equal to 4L = 8W, and the total area of square ABCD is (8W)(8W) = 64W2.

The total area of the tiles is 14(L × W) = 14(2W × W) = 28W2. The desired fraction is thus (28W2)/(64W2) = 28/64. There is no need to reduce this fraction; the statement is sufficient.

(2) SUFFICIENT: Let the length (longer dimension) of each rectangular tile be called L, and the width (shorter dimension) of each tile W. Then each horizontal side of square ABCD has total length 3L, and each vertical side has total length 4L – 2W.

Because EFGH is a square, these total lengths must be equal: 3L = 4L – 2W, which reduces to L = 2W. Therefore, each side of square ABCD is equal to 3L = 6W.

In turn, ABCD must also be a square, since each of its sides is 2W longer than the corresponding side of EFGH (i.e., longer by W on each side). Therefore, each side of ABCD is equal to 6W + 2W = 8W, and the total area of square ABCD is (8W)(8W) = 64W2.

The total area of the tiles is 14(L × W) = 14(2W × W) = 28W2. The desired fraction is thus (28W2)/(64W2) = 28/64. There is no need to reduce this fraction; the statement is sufficient.

Originally posted on MIT Sloan School of Management : We are busy putting the final touches on our application. We plan to have it go live by July 15...