Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
In the diagram, points A, B, and C are on the diameter of [#permalink]
08 Feb 2012, 17:27
5
This post received KUDOS
19
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
95% (hard)
Question Stats:
41% (04:14) correct
59% (04:09) wrong based on 522 sessions
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)
In the diagram, points A, B, and C are on the diameter of [#permalink]
08 Feb 2012, 17:59
18
This post received KUDOS
Expert's post
11
This post was BOOKMARKED
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.) (A) ¾ (B) 5/6 (C) 1 (D) 7/5 (E) 9/7
According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30.
The area of sector \(ABY=\frac{150}{360}*\pi{r^2}=\frac{5}{12}\pi{r^2}\); The area of sector \(CBY=\frac{30}{360}*\pi{r^2}=\frac{1}{12}\pi{r^2}\);
The area of each of two small semicircles is \(\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}\) (as its radius is half of the radius of the big circle);
The are of the shaded region above BY is \(\frac{5}{12}\pi{r^2}-\pi{\frac{r^2}{8}=\frac{7}{24}\pi{r^2}\); The are of the shaded region below BY is \(\frac{1}{12}\pi{r^2}+\pi{\frac{r^2}{8}=\frac{5}{24}\pi{r^2}\);
Ratio of the areas of the shaded regions is \(\frac{7}{5}\).
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
11 Feb 2012, 12:15
1
This post received KUDOS
Expert's post
enigma123 wrote:
Hi Bunuel - can you please help? How did you get the area of two small semi circles??
The radius of the small semicircles is r/2, where r is the radius of the large circle. Thus the area of each is half of the area of the circle with the radius of r/2: \(\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}\).
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
30 Jun 2013, 04:09
Hi Bunel,
I didn't understand the below mentioned part. I did refer to the link provided by you. Can you please can explain this central angle theorem.
"According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30"
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
30 Jun 2013, 07:58
1
This post received KUDOS
Expert's post
Genfi wrote:
Hi Bunel,
I didn't understand the below mentioned part. I did refer to the link provided by you. Can you please can explain this central angle theorem.
"According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30"
Three new triangles can be formed which will be isosceles triangles (please refer the attachment) Hence, x+y = 105 (given) 2(x+y+z) = 360 since ACYX is a quadrilateral x+y+z = 180 -> z = 75
in Triangle, BYC, <YBC will be 180 - 2*z = 180 - 2*75 = 30 degrees.
(1) Area of the total shaded portion is half the area of the circle pi*(r^2)/2
(2) Area below the red line = area of segment BYC of circle + area of shaded semicircle BC = (30/360)*(pi*r^2) + pi ((r/2)^2)/2 =pi*(r^2)/12+pi*(r^2)/8 =5 * pi * (r^2) / 24
(3) Area above the red line is (1)-(2) above = [ pi * (r^2)/2 ] - [ 5 * pi* (r^2) / 24 ] = 7 * pi * (r^2) / 24
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
25 Jun 2014, 23:20
I Thought that's a nice question for a strategic guess (50/50) since the shaded area above the line seemed bigger therefore the answer should be either 3/4 or 5/6 but they tricked me !! _________________
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
02 Aug 2014, 23:04
Bunuel wrote:
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.) (A) ¾ (B) 5/6 (C) 1 (D) 7/5 (E) 9/7
Attachment:
untitled.PNG
According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30.
The area of sector \(ABY=\frac{150}{360}*\pi{r^2}=\frac{5}{12}\pi{r^2}\); The area of sector \(CBY=\frac{30}{360}*\pi{r^2}=\frac{1}{12}\pi{r^2}\);
The area of each of two small semicircles is \(\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}\) (as its radius is half of the radius of the big circle);
The are of the shaded region above BY is \(\frac{5}{12}\pi{r^2}-\pi{\frac{r^2}{8}=\frac{7}{24}\pi{r^2}\); The are of the shaded region below BY is \(\frac{1}{12}\pi{r^2}+\pi{\frac{r^2}{8}=\frac{5}{24}\pi{r^2}\);
Ratio of the areas of the shaded regions is \(\frac{7}{5}\).
Answer: D.
Hi Bunuel,
One query. As we know central angle of a circle is twice the inscribed angle. i.e. if inscribed angle is x then central angle is 2x.
So here if i see angle on YXA is 105 then my central angle on B should be 210.
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
03 Aug 2014, 23:46
enigma123 wrote:
Attachment:
Circle.png
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)
(A) ¾ (B) 5/6 (C) 1 (D) 7/5 (E) 9/7
Thanks for sharing an interesting question. It took me about 10 minutes to solve the problem _________________
......................................................................... +1 Kudos please, if you like my post
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
22 Aug 2014, 01:32
sorry, this might be a basic question . I would like to understand this picture
angle YXA = 105 then according to the central angle theorem, why its not 2*105 .. you have consider exterior angle for X but how we shall determine it. Please advise.
Re: In the diagram, points A, B, and C are on the diameter of [#permalink]
16 Jun 2015, 05:34
enigma123 wrote:
Attachment:
Circle.png
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)
(A) ¾ (B) 5/6 (C) 1 (D) 7/5 (E) 9/7
answer is (D) arc YC subtends an angle 30 degree with the center. Area below line YB is area of circle x (1/12 + 1/8) Area of the shaded region is half of the area of the circle.
gmatclubot
Re: In the diagram, points A, B, and C are on the diameter of
[#permalink]
16 Jun 2015, 05:34
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...