Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
In the rectangular coordinate plane points X and Z lie on [#permalink]
18 Feb 2012, 15:28
1
This post received KUDOS
2
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
5% (low)
Question Stats:
86% (02:15) correct
14% (01:28) wrong based on 87 sessions
Attachment:
Distance.PNG [ 4.74 KiB | Viewed 3911 times ]
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
18 Feb 2012, 16:17
2
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
Attachment:
Distance.PNG [ 4.74 KiB | Viewed 3885 times ]
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?
A. -2 B. -1 C. 0 D. 1 E. 2
Since X and Z lie on the same line through the origin then the distance between X and Z will be equal to the sum of the individual distances of X and Z from the origin: \(\sqrt{c^2 + d^2}+\sqrt{g^2 + h^2}\);
The same way, the distance between W and Y will be equal to the sum of the individual distances of W and Y from the origin: \(\sqrt{a^2 + b^2}+\sqrt{e^2 + f^2}\);
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
23 Feb 2012, 23:24
A quick question: All we know is that the line passes through X, origin, and Z vs. the second line passes through W, origin, and Y. There is no indication that the points are equidistant with respect to the origin. Can we assume this or is there a part of the wording from the original question missing?
The way I approached it: sqrt ((g-c)^2+(h-d)^2) = sqrt ((a-e)^2+ (b-f)^2) This simplifies to gc+hd = ae +bf.
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
24 Feb 2012, 00:15
Expert's post
1
This post was BOOKMARKED
mourinhogmat1 wrote:
A quick question: Nowhere in the question does it say that the two points are equidistant right? How can we say that the distance from origins are same? Please explain.
The formula to calculate the distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is \(d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\). Now, if one point is origin, coordinate (0, 0), then the formula can be simplified to: \(D=\sqrt{x^2+y^2}\).
Hence for our original question: a^2+b^2=c^2+d^2 means that points X and W are equidistant from the origin and e^2+f^2=g^2+h^2 means that points Y and Z are equidistant from the origin.
Next, since X and Z lie on the same line through the origin and W and Y lie on the same line through the origin then the distance of line segments XZ and WY is equal (for algebraic proof see above post).
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
30 May 2013, 19:29
enigma123 wrote:
Attachment:
Distance.PNG
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?
The above will give the answer of zero if we substitute the values from question stem.
Another way to solve this is if I draw a line segment from origin to point W (say w) and origin to point X (say x) will be hypotenuse defined by \(\sqrt{a^2 +b^2}\)= \(\sqrt{w^2}\) and \(\sqrt{c^2 +d^2}\)= \(\sqrt{x^2}\)
So you will end up with w=x and y=z --> (x+z) -(y+z) =0
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
29 Oct 2014, 07:28
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]
15 Nov 2015, 13:27
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...