In the rectangular coordinate plane points X and Z lie on : GMAT Data Sufficiency (DS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

It is currently 09 Dec 2016, 03:52
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In the rectangular coordinate plane points X and Z lie on

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Director
Director
avatar
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 537
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 74

Kudos [?]: 2864 [3] , given: 217

In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 18 Feb 2012, 15:28
3
This post received
KUDOS
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

86% (02:12) correct 14% (01:42) wrong based on 113 sessions

HideShow timer Statistics

Attachment:
Distance.PNG
Distance.PNG [ 4.74 KiB | Viewed 4921 times ]
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?

A. -2
B. -1
C. 0
D. 1
E. 2

[Reveal] Spoiler:
For me the answer should be C ZERO. This is how I arrived to D. Please let me know whether this is correct or not as I don't have an OA.

Distance from all the 4 points from origin can be written as

\(\sqrt{a^2 +b^2}\) + \(\sqrt{e^2 + j^2}\) = \(\sqrt{c^2 + d^2}\) + \(\sqrt{g^2 + h^2}\)

The above will give the answer of zero if we substitute the values from question stem.
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35932
Followers: 6855

Kudos [?]: 90078 [2] , given: 10413

Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 18 Feb 2012, 16:17
2
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
Attachment:
Distance.PNG
Distance.PNG [ 4.74 KiB | Viewed 4894 times ]
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?

A. -2
B. -1
C. 0
D. 1
E. 2

Since X and Z lie on the same line through the origin then the distance between X and Z will be equal to the sum of the individual distances of X and Z from the origin: \(\sqrt{c^2 + d^2}+\sqrt{g^2 + h^2}\);

The same way, the distance between W and Y will be equal to the sum of the individual distances of W and Y from the origin: \(\sqrt{a^2 + b^2}+\sqrt{e^2 + f^2}\);

\(XZ-WY=(\sqrt{c^2 + d^2}+\sqrt{g^2 + h^2})-(\sqrt{a^2 + b^2}+\sqrt{e^2 + f^2})=0\).

Answer: C.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
Joined: 08 Jun 2010
Posts: 397
Location: United States
Concentration: General Management, Finance
GMAT 1: 680 Q50 V32
Followers: 3

Kudos [?]: 87 [0], given: 13

Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 23 Feb 2012, 23:24
A quick question: All we know is that the line passes through X, origin, and Z vs. the second line passes through W, origin, and Y. There is no indication that the points are equidistant with respect to the origin. Can we assume this or is there a part of the wording from the original question missing?

The way I approached it:
sqrt ((g-c)^2+(h-d)^2) = sqrt ((a-e)^2+ (b-f)^2)
This simplifies to gc+hd = ae +bf.

Please explain.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35932
Followers: 6855

Kudos [?]: 90078 [0], given: 10413

Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 24 Feb 2012, 00:15
Expert's post
1
This post was
BOOKMARKED
mourinhogmat1 wrote:
A quick question: Nowhere in the question does it say that the two points are equidistant right? How can we say that the distance from origins are same? Please explain.


The formula to calculate the distance between two points \((x_1,y_1)\) and \((x_2,y_2)\) is \(d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\). Now, if one point is origin, coordinate (0, 0), then the formula can be simplified to: \(D=\sqrt{x^2+y^2}\).

Hence for our original question: a^2+b^2=c^2+d^2 means that points X and W are equidistant from the origin and e^2+f^2=g^2+h^2 means that points Y and Z are equidistant from the origin.

Next, since X and Z lie on the same line through the origin and W and Y lie on the same line through the origin then the distance of line segments XZ and WY is equal (for algebraic proof see above post).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Status: Preparing...
Joined: 25 Mar 2013
Posts: 29
Location: United States
Sat: V
Concentration: Strategy, Technology
GMAT Date: 07-22-2013
GPA: 3.7
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 8 [0], given: 14

Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 30 May 2013, 19:29
enigma123 wrote:
Attachment:
Distance.PNG
In the rectangular coordinate plane points X and Z lie on the same line through the origin and points W and Y lie on the same line through the origin. If a^2+b^2=c^2+d^2 and e^2+f^2=g^2+h^2, what is the value of length XZ – length WY?

A. -2
B. -1
C. 0
D. 1
E. 2

[Reveal] Spoiler:
For me the answer should be C ZERO. This is how I arrived to D. Please let me know whether this is correct or not as I don't have an OA.

Distance from all the 4 points from origin can be written as

\(\sqrt{a^2 +b^2}\) + \(\sqrt{e^2 + j^2}\) = \(\sqrt{c^2 + d^2}\) + \(\sqrt{g^2 + h^2}\)

The above will give the answer of zero if we substitute the values from question stem.



Another way to solve this is if I draw a line segment from origin to point W (say w) and origin to point X (say x) will be hypotenuse defined by \(\sqrt{a^2 +b^2}\)= \(\sqrt{w^2}\)
and \(\sqrt{c^2 +d^2}\)= \(\sqrt{x^2}\)

So you will end up with w=x and y=z --> (x+z) -(y+z) =0
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12902
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 29 Oct 2014, 07:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12902
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: In the rectangular coordinate plane points X and Z lie on [#permalink]

Show Tags

New post 15 Nov 2015, 13:27
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: In the rectangular coordinate plane points X and Z lie on   [#permalink] 15 Nov 2015, 13:27
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic In a rectangular coordinate system, does the point (1,1) lie on line Bunuel 1 15 Nov 2016, 00:46
2 Experts publish their posts in the topic In a rectangular coordinate system, are the points (x, y) and (w, z) Bunuel 3 26 Sep 2016, 02:29
13 Experts publish their posts in the topic In which quadrant of the coordinate plane does the point (x,y) lie? Bunuel 8 26 May 2015, 07:23
3 Experts publish their posts in the topic Points (a, b) and (c, d) lie on line L in the coordinate plane. Does p Bunuel 4 09 Feb 2015, 05:36
9 Experts publish their posts in the topic In the xy coordinate plane, does the point (3,4) lie on line obs23 5 15 Apr 2013, 04:03
Display posts from previous: Sort by

In the rectangular coordinate plane points X and Z lie on

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.