In the rectangular coordinate system above, the line y = x : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 18 Jan 2017, 13:52

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In the rectangular coordinate system above, the line y = x

Author Message
TAGS:

### Hide Tags

Director
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 536
Location: United Kingdom
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 74

Kudos [?]: 2957 [1] , given: 217

In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

31 Mar 2012, 01:54
1
KUDOS
15
This post was
BOOKMARKED
00:00

Difficulty:

35% (medium)

Question Stats:

68% (02:11) correct 32% (01:42) wrong based on 578 sessions

### HideShow timer Statistics

Attachment:

Capture.GIF [ 3.28 KiB | Viewed 19100 times ]
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Math Expert
Joined: 02 Sep 2009
Posts: 36548
Followers: 7076

Kudos [?]: 93104 [8] , given: 10552

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

31 Mar 2012, 03:26
8
KUDOS
Expert's post
19
This post was
BOOKMARKED
enigma123 wrote:
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

Since the line y=x is the perpendicular bisector of segment AB, then the point B is the mirror reflection of point A around the line y=x, so its coordinates are (4, 1). The same way, since the x-axis is the perpendicular bisector of segment BC then the point C is the mirror reflection of point B around the x-axis, so its coordinates are (4, -1).

The question becomes much easier if you just draw rough sketch of the diagram:
Attachment:

graph.png [ 12.57 KiB | Viewed 19127 times ]
Now, you can simply see that options A, B, and D (blue dots) just can not be the right answers. As for option E: point (4, 1) coincides with point B, so it's also not the correct answer. Only answer choice C remains.

Similar questions to practice:
in-the-xy-coordinate-plane-is-point-r-equidistant-from-143502.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-132646.html
the-coordinates-of-points-a-and-c-are-0-3-and-127769.html
the-line-represented-by-the-equation-y-4-2x-is-the-127770.html
if-point-a-coordinates-are-7-3-point-b-coordinates-a-141972.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-88473.html
in-the-rectangular-coordinate-system-above-the-line-y-x-144774.html
the-line-represented-by-the-equation-y-4-2x-is-the-perpendi-87573.html

Hope it helps.
_________________
Manager
Joined: 13 May 2010
Posts: 124
Followers: 0

Kudos [?]: 13 [0], given: 4

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

01 Aug 2012, 04:04
1
This post was
BOOKMARKED
What is the mirror image of a point (x,y) around Y-axis?

Also what is the mirror image of a point (x,y) around line y=-x?
Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 889 [3] , given: 43

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

01 Aug 2012, 05:56
3
KUDOS
3
This post was
BOOKMARKED
teal wrote:
What is the mirror image of a point (x,y) around Y-axis?
Also what is the mirror image of a point (x,y) around line y=-x?

The mirror image of $$(x,y)$$ around the Y-axis is $$(-x,y)$$.

For the second question:
Assume we have a point P(a,b) and we want to find its mirror image around the line $$y = -x$$.
Let's denote the point we seek by Q(A,B). See the attached drawing.

The equation of the line passing through P and perpendicular to the line $$y = -x$$ is $$y - b = x - a$$, or $$y = x + b - a$$.
Since Q is also on this line, we have $$B = A + b - a$$, from which $$A - B = a - b$$.
The middle point of the line segment PQ (denoted by M) is also on the line $$y = -x$$, therefore $$\frac{a+A}{2}=-\frac{b+B}{2}$$, or $$A + B = -a - b$$.
Solving for A and B, we find that $$A = -b, B =-a$$.

Therefore, the mirror image of $$(x,y)$$ around the line $$y = -x$$ is $$(-y, -x)$$.
Attachments

MirrorImage.jpg [ 18.1 KiB | Viewed 18433 times ]

_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 25

Kudos [?]: 433 [1] , given: 11

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

02 Jan 2013, 04:09
1
KUDOS
enigma123 wrote:
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

Any idea guys how to solve this mathematically?

For me, the best approach to this question is to draw and estimate AB and BC lines. Doing so obviously shows that:
(a) y has negative coordinates... Thus, eliminate B and E.
(b) x has positive coordinates beyond 2. Thus, eliminate A and D.

Or, if you want to be really sure... We can get the line perpendicular x=y.
(a) get negative reciprocal of slope of y=x which is m=1. Thus, reciprocal is m=-1. Perpendicular line: y=-x + b
(b) calculate b using A coordinates: y = -x + b ==> 4 = -1 + b ==> b = 5
(c) get the pt. of intersection. -x + 5 = x ==> x = 2.5
(d) get y=-(2.5) + 5 --> y = 2.5

So, obviously... C would have negative for y coordinate and x > 2.5... only C fits the bill

But still, drawing should suffice...
_________________

Impossible is nothing to God.

Math Expert
Joined: 02 Sep 2009
Posts: 36548
Followers: 7076

Kudos [?]: 93104 [0], given: 10552

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

27 Jun 2013, 22:47
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Coordinate Geometry: math-coordinate-geometry-87652.html

All DS Coordinate Geometry Problems to practice: search.php?search_id=tag&tag_id=41
All PS Coordinate Geometry Problems to practice: search.php?search_id=tag&tag_id=62

_________________
Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 630
Followers: 80

Kudos [?]: 1118 [2] , given: 136

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

27 Jun 2013, 23:31
2
KUDOS
1
This post was
BOOKMARKED
enigma123 wrote:
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

Let the co-ordinates of B = (p,q). As x=y is the perpendicular bisector of the line segment AB, thus the middle point of AB will lie on x=y itself. Thus, for A(1,4) and B(p,q)-->

$$\frac {p+1} {2} = \frac {q+4} {2}$$ --> p-q = 3

Also, the slope of the line segment would be -1--> $$\frac {q-4}{p-1} = -1$$ --> $$p+q = 5$$.Thus, on solving, the co-ordinates of B (4,1).

Similarly, as y=0(the x-axis) is the perpendicular bisector of BC, thus, the mid point of BC would like on the x-axis and thus, the y co-ordinate of C has to be -1. Thus, only A and C survive. Again, the slope of line segment BC has to be undefined as it is parallel to the y-axis(or perpendicular to the x axis).

Only option C survives.

C.
_________________
MBA Section Director
Status: On vacation...
Affiliations: GMAT Club
Joined: 21 Feb 2012
Posts: 3943
Location: India
City: Pune
GMAT 1: 680 Q49 V34
GPA: 3.4
Followers: 392

Kudos [?]: 2878 [2] , given: 2159

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

28 Jun 2013, 04:36
2
KUDOS
Expert's post
Bunuel wrote:
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

The line Y = X always makes 45 deg angle with the X axis and has slope 1

Since the line Y = X is perpendicular to line AB, The slope of AB must be -1 --------[The product of the slopes of a line and its perpendicular is always -1]

Hereinafter, Even if we are not familiar with 'mirror image' concept we can draft the following figure and can check the answer options.

Since X axis itself is bisector of line BC we can deduce that X value of C can not be negative. Eliminate A, B

We also know Y value of C can not be positive. Eliminate E

Now consider the point A(1,4) This point is on the line that has slope -1, so the X value of its opposite end (i.e. X of B and C also) must be greater than 1. So Choice D (1, -4) Can not be the location of C. Eliminate.

Only option left is C, which is the Answer.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13438
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

06 Aug 2014, 01:37
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 24 Jun 2014
Posts: 48
Followers: 0

Kudos [?]: 20 [0], given: 187

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

29 Nov 2014, 20:36
EvaJager wrote:
teal wrote:
What is the mirror image of a point (x,y) around Y-axis?
Also what is the mirror image of a point (x,y) around line y=-x?

The mirror image of $$(x,y)$$ around the Y-axis is $$(-x,y)$$.

For the second question:
Assume we have a point P(a,b) and we want to find its mirror image around the line $$y = -x$$.
Let's denote the point we seek by Q(A,B). See the attached drawing.

The equation of the line passing through P and perpendicular to the line $$y = -x$$ is $$y - b = x - a$$, or $$y = x + b - a$$.
Since Q is also on this line, we have $$B = A + b - a$$, from which $$A - B = a - b$$.
The middle point of the line segment PQ (denoted by M) is also on the line $$y = -x$$, therefore $$\frac{a+A}{2}=-\frac{b+B}{2}$$, or $$A + B = -a - b$$.
Solving for A and B, we find that $$A = -b, B =-a$$.

Therefore, the mirror image of $$(x,y)$$ around the line $$y = -x$$ is $$(-y, -x)$$.

Hi I have one question. What if the question ask to find the mirror image of (x,y) around the line y = 2x + 3 for example, how to solve it?
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13438
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

12 Jan 2016, 07:19
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Director
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 511
Location: United States (CA)
Followers: 19

Kudos [?]: 187 [1] , given: 2

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

13 Jul 2016, 06:37
1
KUDOS
enigma123 wrote:
Attachment:
Capture.GIF
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

This problem does contain a diagram that looks like the following:

We are given that the line y = x is a perpendicular bisector of line segment AB. This indicates that point B is a reflection of point A across the line y = x. When we reflect a point (a,b) across the line y = x, the reflected point has the coordinates reversed: (b,a). Thus, since point A is at (2,3), point B must be (3,2).

We are next given that the x-axis is a perpendicular bisector of line segment BC. This means that point C must have the same x-coordinate as point B (3) but the opposite y-coordinate of point B (-2). To further elaborate, we can draw a diagram.

_________________

Jeffrey Miller
Scott Woodbury-Stewart
Founder and CEO

Manager
Joined: 11 Jul 2016
Posts: 86
Followers: 0

Kudos [?]: 10 [0], given: 83

In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

15 Oct 2016, 23:22
Bunuel wrote:
enigma123 wrote:
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

Since the line y=x is the perpendicular bisector of segment AB, then the point B is the mirror reflection of point A around the line y=x, so its coordinates are (4, 1). The same way, since the x-axis is the perpendicular bisector of segment BC then the point C is the mirror reflection of point B around the x-axis, so its coordinates are (4, -1).

The question becomes much easier if you just draw rough sketch of the diagram:
Attachment:
graph.png
Now, you can simply see that options A, B, and D (blue dots) just can not be the right answers. As for option E: point (4, 1) coincides with point B, so it's also not the correct answer. Only answer choice C remains.

Similar questions to practice:
in-the-xy-coordinate-plane-is-point-r-equidistant-from-143502.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-132646.html
the-coordinates-of-points-a-and-c-are-0-3-and-127769.html
the-line-represented-by-the-equation-y-4-2x-is-the-127770.html
if-point-a-coordinates-are-7-3-point-b-coordinates-a-141972.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-88473.html
in-the-rectangular-coordinate-system-above-the-line-y-x-144774.html
the-line-represented-by-the-equation-y-4-2x-is-the-perpendi-87573.html

Hope it helps.

Bunuel,
where can I find the conceptual understanding for finding the mirror image of any line?
Math Expert
Joined: 02 Sep 2009
Posts: 36548
Followers: 7076

Kudos [?]: 93104 [0], given: 10552

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

16 Oct 2016, 01:55
Manonamission wrote:
Bunuel wrote:
enigma123 wrote:
In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (1, 4), what are the coordinates of point C?

A. (-4, -1)
B. (-1, 4)
C. (4, -1)
D. (1, -4)
E. (4, 1)

Since the line y=x is the perpendicular bisector of segment AB, then the point B is the mirror reflection of point A around the line y=x, so its coordinates are (4, 1). The same way, since the x-axis is the perpendicular bisector of segment BC then the point C is the mirror reflection of point B around the x-axis, so its coordinates are (4, -1).

The question becomes much easier if you just draw rough sketch of the diagram:
Attachment:
graph.png
Now, you can simply see that options A, B, and D (blue dots) just can not be the right answers. As for option E: point (4, 1) coincides with point B, so it's also not the correct answer. Only answer choice C remains.

Similar questions to practice:
in-the-xy-coordinate-plane-is-point-r-equidistant-from-143502.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-132646.html
the-coordinates-of-points-a-and-c-are-0-3-and-127769.html
the-line-represented-by-the-equation-y-4-2x-is-the-127770.html
if-point-a-coordinates-are-7-3-point-b-coordinates-a-141972.html
in-the-rectangular-coordinate-system-the-line-y-x-is-the-88473.html
in-the-rectangular-coordinate-system-above-the-line-y-x-144774.html
the-line-represented-by-the-equation-y-4-2x-is-the-perpendi-87573.html

Hope it helps.

Bunuel,
where can I find the conceptual understanding for finding the mirror image of any line?

You can try following the links given in the post you quote.

Hope it helps.
_________________
Manager
Joined: 06 Oct 2015
Posts: 60
Followers: 0

Kudos [?]: 3 [0], given: 29

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

22 Oct 2016, 05:06
Hi Bunuel,
Is it always true that a perpendicular bisector will have mirror reflection of the ends?
BSchool Forum Moderator
Joined: 18 Jul 2015
Posts: 942
Location: India
GMAT 1: 670 Q50 V32
GMAT 2: 700 Q50 V34
GPA: 3.65
WE: Brand Management (Health Care)
Followers: 25

Kudos [?]: 235 [0], given: 33

Re: In the rectangular coordinate system above, the line y = x [#permalink]

### Show Tags

22 Oct 2016, 05:26
NaeemHasan wrote:
Hi Bunuel,
Is it always true that a perpendicular bisector will have mirror reflection of the ends?

Yes, it is always true.
_________________

Thanks.

Re: In the rectangular coordinate system above, the line y = x   [#permalink] 22 Oct 2016, 05:26
Similar topics Replies Last post
Similar
Topics:
4 In the rectangular coordinate system above, the line x=0 is the perpen 6 24 May 2015, 02:23
57 In the rectangular coordinate system above, the line y = x 12 27 Dec 2012, 04:05
21 In the rectangular coordinate system, if the line x = 2y + 5 8 27 May 2012, 08:05
21 In the rectangular coordinate system, the line y = x is the 12 15 May 2012, 20:23
11 In the rectangular coordinate system, the line y = -x is the 8 27 Dec 2009, 10:07
Display posts from previous: Sort by