Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In the rectangular coordinate system above, the line y = x [#permalink]
27 Dec 2012, 04:05

1

This post received KUDOS

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

74% (02:38) correct
26% (01:42) wrong based on 340 sessions

Attachment:

Reflcetion.png [ 8.39 KiB | Viewed 3571 times ]

In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (2,3), what are the coordinates of point C ?

Re: In the rectangular coordinate system above, the line y = x [#permalink]
27 Dec 2012, 04:13

2

This post received KUDOS

Expert's post

6

This post was BOOKMARKED

In the rectangular coordinate system above, the line y = x is the perpendicular bisector of segment AB (not shown), and the x-axis is the perpendicular bisector of segment BC (not shown). If the coordinates of point A are (2,3), what are the coordinates of point C ?

Since the line y=x is the perpendicular bisector of segment AB, then point B is the mirror reflection of point A around the line y=x, so its coordinates are (3, 2). In any mirror reflection around the line y = x, the x-coordinate and the y-coordinate of a point become interchanged.

The same way, since the y-axis is the perpendicular bisector of segment BC then the point C is the mirror reflection of point B around the y-axis, so its coordinates are (-3, 2). In any mirror reflection around the x-axis, the x-coordinate remains the same, and the sign of the y-coordinate changes.

Answer: D.

The question becomes much easier if you just draw a rough sketch:

Attachment:

Reflection2.png [ 10.75 KiB | Viewed 3412 times ]

Now, you can simply see that only D can be the correct answer.

Re: In the rectangular coordinate system above, the line y = x [#permalink]
30 Oct 2013, 05:25

4

This post received KUDOS

From question stem, we can know that, Point C will be in the 4th quadrant (X,-Y), which comes down to option C&D. B is perpendicular to A (2,3). Hence co-ordinates of B will be (3,2). C & B are parallel to Y-axis and are on the same line. Hence co-ordinates of C will share same X-co-ordinate. (3,-Y). i.e. Ans. choice D

*I have difficult time understanding Co-ordiante geometry, hence try to solve in the simple way. This was my approach and was able to get ans. in less than a Minute.

Re: In the rectangular coordinate system above, the line y = x [#permalink]
09 Dec 2014, 09:46

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

For my Cambridge essay I have to write down by short and long term career objectives as a part of the personal statement. Easy enough I said, done it...