Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In the sequence of non-zero numbers t1, t2,t3,......tn,.....,tn+1 =t2/2 for all positive integers of n. What is the value of t5? 1. t3=1/4 2. t1-t5=15/16

Pls Explain?

is the question a complete one? seems the question is not complete for me.

In the sequence of non-zero numbers t1, t2,t3,......tn,..... [#permalink]

Show Tags

23 Aug 2013, 03:25

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

riks200 wrote:

In the sequence of non-zero numbers t1, t2,t3,......tn,.....,tn+1 =tn/2 for all positive integers of n. What is the value of t5?

(1) t3 = 1/4 (2) t1 - t5 = 15/16

Given: \(t_{n+1}=\frac{t_n}{2}\). So \(t_2=\frac{t_1}{2}\), \(t_3=\frac{t_2}{2}=\frac{t_1}{4}\), \(t_4=\frac{t_3}{2}=\frac{t_1}{8}\), ...

Basically we have geometric progression with common ratio \(\frac{1}{2}\): \(t_1\), \(\frac{t_1}{2}\), \(\frac{t_1}{4}\), \(\frac{t_1}{8}\), ... --> \(t_n=\frac{t_1}{2^{n-1}}\).

Question: \(t_5=\frac{t_1}{2^4}=?\)

(1) \(t_3=\frac{1}{4}\) --> we can get \(t_1\) --> we can get \(t_5\). Sufficient. (2) \(t_1-t_5=2^4*t_5-t_5=\frac{15}{16}\) --> we can get \(t_5\). Sufficient.

Answer: D.

Generally for arithmetic (or geometric) progression if you know:

- any particular two terms, - any particular term and common difference (common ratio), - the sum of the sequence and either any term or common difference (common ratio),

then you will be able to calculate any missing value of given sequence.

Post your Blog on GMATClub We would like to invite all applicants who are applying to BSchools this year and are documenting their application experiences on their blogs to...

HBS alum talks about effective altruism and founding and ultimately closing MBAs Across America at TED: Casey Gerald speaks at TED2016 – Dream, February 15-19, 2016, Vancouver Convention Center...