Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Hello, quantum, this is my attempt to explain why it's D:

Quote:

In the sequence of nonzero numbers t1, t2, t3, …, tn, …, tn+1 = tn / 2 for all positive integers n. What is the value of t5? (1) t3 = 1/4 (2) t1 - t5 = 15/16

Here we have geometric progression, i.e. series where t2=t1*q, t3=t2*q, …, tn+1=tn*q. In our case, q=0.5. Also note that tn+1=t1*q^n

So, basically, to answer this question, it is sufficient to know the value of any of the tn.

1) Explicitly gives us the value for t3, so it’s sufficient.

2) So, let’s see if we can obtain the value of t1 from this statement, using the formula tn+1=t1*q^n:

In the sequence of nonzero numbers t1, t2, t3, …, tn, …, tn+1 = tn / 2 for all positive integers n. What is the value of t5? (1) t3 = 1/4 (2) t1 - t5 = 15/16

see attached

Attachments

sequence.gif [ 6.83 KiB | Viewed 6264 times ]

_________________

Factorials were someone's attempt to make math look exciting!!!

Good explanations but I got confused at how you equated tn+1=tn/2? I thought the it was the entire expression that equaled to tn/2? sorry but I am a bit confused. Thanks.

In the sequence of nonzero numbers t1, t2, t3, , tn, , tn+1 [#permalink]
19 Dec 2010, 15:42

Expert's post

gettinit wrote:

Good explanations but I got confused at how you equated tn+1=tn/2? I thought the it was the entire expression that equaled to tn/2? sorry but I am a bit confused. Thanks.

In the sequence of nonzero numbers t1, t2, t3, …, tn, …, tn+1 = tn / 2 for all positive integers n. What is the value of t5?

Given: \(t_{n+1}=\frac{t_n}{2}\). So \(t_2=\frac{t_1}{2}\), \(t_3=\frac{t_2}{2}=\frac{t_1}{4}\), \(t_4=\frac{t_3}{2}=\frac{t_1}{8}\), ...

Basically we have geometric progression with common ratio \(\frac{1}{2}\): \(t_1\), \(\frac{t_1}{2}\), \(\frac{t_1}{4}\), \(\frac{t_1}{8}\), ... --> \(t_n=\frac{t_1}{2^{n-1}}\).

Question: \(t_5=\frac{t_1}{2^4}=?\)

(1) \(t_3=\frac{1}{4}\) --> we can get \(t_1\) --> we can get \(t_5\). Sufficient. (2) \(t_1-t_5=2^4*t_5-t_5=\frac{15}{16}\) --> we can get \(t_5\). Sufficient.

Answer: D.

Generally for arithmetic (or geometric) progression if you know:

- any particular two terms, - any particular term and common difference (common ratio), - the sum of the sequence and either any term or common difference (common ratio),

then you will be able to calculate any missing value of given sequence.

Re: In the sequence of nonzero numbers t1, t2, t3, , tn, , tn+1 [#permalink]
15 Apr 2014, 01:43

1

This post received KUDOS

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: In the sequence of nonzero numbers t1, t2, t3, , tn, , tn+1 [#permalink]
22 Nov 2014, 09:31

Bunuel. I have a question about the 3rd generalized case. What does 'the formula for nth term' mean? Is it a+(n-1)d? I am guessing not since (a)we already know that as a formula and (b)Along with any particular term, the formula would still leave 2 variables- a and d. So are we talking about another equation for a term? Thanks again

Re: In the sequence of nonzero numbers t1, t2, t3, , tn, , tn+1 [#permalink]
23 Nov 2014, 04:33

1

This post received KUDOS

Expert's post

deeuk wrote:

Bunuel. I have a question about the 3rd generalized case. What does 'the formula for nth term' mean? Is it a+(n-1)d? I am guessing not since (a)we already know that as a formula and (b)Along with any particular term, the formula would still leave 2 variables- a and d. So are we talking about another equation for a term? Thanks again

You are right. I phrased that ambiguously. Will edit. _________________

Can you teach businessmen to be ethical? : he mind is divided into two parts that sometimes conflict, like a small rider sitting on the back of a very...

HBS: Reimagining Capitalism: Business and Big Problems : Growing income inequality, poor or declining educational systems, unequal access to affordable health care and the fear of continuing economic distress...

Over the last week my Facebook wall has been flooded with most positive, almost euphoric emotions: “End of a fantastic school year”, “What a life-changing year it’s been”, “My...