Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Thanks Bunuel, I used similar method for a similar question and I got wrong answer the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since x=10 x=-10 y=10 y=-10

isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\) \(y=10+x\) \(y=10-x\) \(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).

Hi, Can this be solved by graphing. If yes .. how do we graph the equation with 2 mod parts

VeritasPrepKarishma wrote:

VinuPriyaN wrote:

Given |x-y| + |x+y| = 4

I don't understand why can't |x-y| and |x+y| be 1 and 3 instead of 2 and 2! (which again equals 4)

Can any one please explain this to me?

Thanks & Regards, Vinu

Look at the solution given by Bunuel above. When you solve it, you get four equations. One of them is x = 2 which means that x = 2 and y can take any value. If y = 1, |x-y| = 1 and |x+y| = 3. For different values of y, |x-y| and |x+y| will get different values. We are not discounting any of them.

Yes, it can be done by graphing. |x+y| + |x-y| = 4 can expand in four different wasy:

A. x+y+x-y = 4 --> x=2 B. x+y-x+y = 4 --> y=2 C. -x-y +x-y= 4 --> y=-2 D. -x-y-x+y=4 --> x=-2

So you can draw all these four lines x=2, x=-2, y=2, y=-2 to get a square with the side of 4:

I totally agree with your explanation, but the point is, why couldn't we draw the slant lines for the points (2,0), (-2,0), (0,2) and (0,-2) instead of horizontal lines and consider the length of diagonal rather than length of side for the original question (|x+y| + |x-y| = 4).

Thanks in advance.

Because you are asked the area of the region bounded by |x+y| + |x-y| = 4. This equation gives you ONLY horizontal/vertical lines passing through points (2,0), (-2,0), (0,2) and (0,-2) such as x = 2, y = 2, x = -2, y = -2.

Note that x = 2 is the equation of a line (it is not a coordinate) which passes through point (2, 0) and is parallel to the y axis. Similarly, y = 2 is the equation of a line which is parallel to x axis and passes through the point (0, 2) and so on. I think you are taking x = 2 as a coordinate but that is not the case. A coordinate has a value for y too. x =2 is the equation of a line. It implies that x coordinate is always 2 and y can be anything. So all points lying on a line passing through x = 2 and parallel to y axis satisfy this criteria.
_________________

Thanks Bunuel, I used similar method for a similar question and I got wrong answer the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since x=10 x=-10 y=10 y=-10

isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\) \(y=10+x\) \(y=10-x\) \(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).

Hope it's clear.

Hi bunnel,

How did u rhombus for this one and a square for the other one?...I got the limits for both the questions, but could not figure out they turn out to be a square and rhombus!...

Even that is a square but never forget that A Square is a specific type of Rhombus only

I hope, You can understand that the Product of the slopes of the adjacent sides is -1 in that figure which proves the angle between the adjacent sides as 90 degree

a Square is a "Rhombus with all angles 90 degrees". So calling it a Rhombus won't be wrong either but you are right about the figure being a Square.
_________________

Why cant we consider (4,0) and (0,4) as points on graph ? then area would be different... , right?

First of all we are not considering points separately, as we have X-Y plane and roots of equation will represent lines, we'll get the figure bounded by this 4 lines. The equations for the lines are:

x=2 x=-2 y=2 y=-2

This lines will make a square with the side 4, hence area 4*4=16.

Second: points (4,0) or (0,4) doesn't work for |x+y| + |x-y| = 4.
_________________

Why cant we consider (4,0) and (0,4) as points on graph ? then area would be different... , right?

First of all we are not considering points separately, as we have X-Y plane and roots of equation will represent lines, we'll get the figure bounded by this 4 lines. The equations for the lines are:

x=2 x=-2 y=2 y=-2

This lines will make a square with the side 4, hence area 4*4=16.

Second: points (4,0) or (0,4) doesn't work for |x+y| + |x-y| = 4.

Thanks Bunuel, I used similar method for a similar question and I got wrong answer the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since x=10 x=-10 y=10 y=-10

isnt the area 400 ? the answer given was 200, please explain
_________________

Thanks, Sri ------------------------------- keep uppp...ing the tempo...

Press +1 Kudos, if you think my post gave u a tiny tip

I don't understand why can't |x-y| and |x+y| be 1 and 3 instead of 2 and 2! (which again equals 4)

Can any one please explain this to me?

Thanks & Regards, Vinu

Look at the solution given by Bunuel above. When you solve it, you get four equations. One of them is x = 2 which means that x = 2 and y can take any value. If y = 1, |x-y| = 1 and |x+y| = 3. For different values of y, |x-y| and |x+y| will get different values. We are not discounting any of them.
_________________

After days of waiting, sharing the tension with other applicants in forums, coming up with different theories about invites patterns, and, overall, refreshing my inbox every five minutes to...

I was totally freaking out. Apparently, most of the HBS invites were already sent and I didn’t get one. However, there are still some to come out on...

In early 2012, when I was working as a biomedical researcher at the National Institutes of Health , I decided that I wanted to get an MBA and make the...