In the xy-coordinate plane, line l and line k intersect at : DS Archive
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 21 Jan 2017, 16:46

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In the xy-coordinate plane, line l and line k intersect at

Author Message
Director
Joined: 17 Oct 2005
Posts: 932
Followers: 1

Kudos [?]: 203 [0], given: 0

In the xy-coordinate plane, line l and line k intersect at [#permalink]

### Show Tags

18 Dec 2005, 12:34
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions

### HideShow timer Statistics

This topic is locked. If you want to discuss this question please re-post it in the respective forum.

In the xy-coordinate plane, line l and line k intersect at the point (4,3). Is the product of their slpes negative?

1) the product of the x-intercepts of the lines l and k is positive

2) the product of the y-intercepts of lines l and k is negative
Director
Joined: 17 Dec 2005
Posts: 548
Location: Germany
Followers: 1

Kudos [?]: 40 [0], given: 0

### Show Tags

18 Dec 2005, 13:20
Let's see...

1) Since the product of the intercepts is positive, both intercepts must either intersect the x-axis in the positive or negative array.

If both intersect the x-axis in the negative array, the slope of both lines must be positive.
If they intersect the x-axis in the positive array, they can either have a positive or negative slope ( one can even be negative while the others is positive*), depending on if they intersect left or right from the point (4,3)

Thus statement 1 is insufficient

2) The one that intersects the y-axis in the negative array has to have a positive slope, the other one, which intersects in the positive array, has to have a negative slope. Thus sufficient. It's B
Attachments

File comment: sorry for my graphics, can't do them better

Unbenannt.JPG [ 14.08 KiB | Viewed 672 times ]

SVP
Joined: 24 Sep 2005
Posts: 1890
Followers: 19

Kudos [?]: 292 [0], given: 0

### Show Tags

18 Dec 2005, 20:34
Hik, I badly tried to find the link in which i solved this geo problem http://www.gmatclub.com/phpbb/viewtopic.php?t=22973
Director
Joined: 17 Oct 2005
Posts: 932
Followers: 1

Kudos [?]: 203 [0], given: 0

### Show Tags

19 Dec 2005, 07:16
thanks laxie, i hope there is an easier way to do this. I spent a page of scrap paper for this.
Senior Manager
Joined: 05 Oct 2005
Posts: 485
Followers: 1

Kudos [?]: 4 [0], given: 0

### Show Tags

19 Dec 2005, 10:26
Its C... I did by drawing the possible lines on a coordinate plane..
19 Dec 2005, 10:26
Display posts from previous: Sort by