Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In the xy-plane, point (r, s) lies on a circle with center at the origin. What is the value of r^2 + s^2? (1) The circle has radius 2. (2) The point (v2, -v2) lies on the circle.

(1) r^2 + s^2 is the square of the radius of the circle. Sufficient.

(2) This is of no consequence since for any circle centered at the origin, there would be a point (v2. -v2) would lie on the circle. Gives us no info about r^2 + s^2.

THEORY: In an xy-plane, the circle with center (a, b) and radius r is the set of all points (x, y) such that: (x-a)^2+(y-b)^2=r^2

This equation of the circle follows from the Pythagorean theorem applied to any point on the circle: as shown in the diagram above, the radius is the hypotenuse of a right-angled triangle whose other sides are of length x-a and y-b.

If the circle is centered at the origin (0, 0), then the equation simplifies to: x^2+y^2=r^2.

Re: In the xy-plane, point (r, s) lies on a circle with center [#permalink]
02 Mar 2013, 21:08

1

This post received KUDOS

Thanks for the brilliant explanation. One thing I don't get the question is that, the point (r,s) could be anywhere in the circle, not only on its circumference. Why does it refer only to a point on the circumference? Thanks!

Re: In the xy-plane, point (r, s) lies on a circle with center [#permalink]
02 Mar 2013, 23:02

2

This post received KUDOS

ryusei1989 wrote:

Thanks for the brilliant explanation. One thing I don't get the question is that, the point (r,s) could be anywhere in the circle, not only on its circumference. Why does it refer only to a point on the circumference? Thanks!

It is the language. On the circle = On the circumference. In/Inside/Within the circle = Points enclosed by the circumference _________________

"Appreciation is a wonderful thing. It makes what is excellent in others belong to us as well." ― Voltaire Press Kudos, if I have helped. Thanks! shit-happens-my-journey-to-172475.html#p1372807

Re: In the xy-plane, point (r, s) lies on a circle with center [#permalink]
05 Jul 2014, 01:53

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________