Find all School-related info fast with the new School-Specific MBA Forum

It is currently 29 Aug 2014, 20:54

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In triangle ABC, point X is the midpoint of side AC and

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
5 KUDOS received
SVP
SVP
User avatar
Joined: 05 Jul 2006
Posts: 1542
Followers: 5

Kudos [?]: 71 [5] , given: 39

In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 18 Aug 2009, 17:44
5
This post received
KUDOS
8
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

52% (02:35) correct 48% (01:40) wrong based on 651 sessions
In triangle ABC, point X is the midpoint of side AC and point Y is the midpoint of side BC. If point R is the midpoint of line segment XC and if point S is the midpoint of line segment YC, what is the area of triangular region RCS ?

(1) The area of triangular region ABX is 32.
(2) The length of one of the altitudes of triangle ABC is 8.
[Reveal] Spoiler: OA
16 KUDOS received
Manager
Manager
avatar
Joined: 25 Jul 2009
Posts: 117
Schools: NYU, NUS, ISB, DUKE, ROSS, DARDEN
Followers: 4

Kudos [?]: 143 [16] , given: 17

GMAT Tests User
Re: Triangles [#permalink] New post 19 Aug 2009, 10:32
16
This post received
KUDOS
2
This post was
BOOKMARKED
yezz wrote:
In triangle ABC, point X is the midpoint of side AC and point Y is the midpoint of side BC. If point R is the midpoint of line segment XC and if point S is the midpoint of line segment YC, what is the area of triangular region RCS ?

(1) The area of triangular region ABX is 32.
(2) The length of one of the altitudes of triangle ABC is 8.



SOL:
This question makes use of the Midpoint theorem in case of triangles. According to the theorem, the segment joining the midpoints of two sides of a triangle is half the length of the third side and the smaller triangle thus formed is similar to the original triangle. The ratio of sides of the smaller tr to the larger tr = 1/2

=> A(smaller tr) : A(Larger tr) = 1:4

From the given info we have:
A(CYX) : A(ABC) = 1:4
A(CSR) : A(CYX) = 1:4
=> A(CSR) = 1/16 * A(ABC)

ST 1:
A(ABX) = 1/2 * A(ABC) ....... Since they have the same height and the base of ABX is half the base of ABC
Thus from A(ABX), we can calculate A(CSR) => A(ABX)/8 = 4
=> SUFFICIENT

ST 2:
We cannot deduce anything from the length of one of the heigths.
=> NOT SUFFICIENT

ANS: A
_________________

KUDOS me if I deserve it !! :)

My GMAT Debrief - 740 (Q50, V39) | My Test-Taking Strategies for GMAT | Sameer's SC Notes

1 KUDOS received
Manager
Manager
avatar
Joined: 30 May 2008
Posts: 76
Followers: 0

Kudos [?]: 11 [1] , given: 26

Re: Triangles [#permalink] New post 21 Apr 2012, 02:04
1
This post received
KUDOS
samrus98 wrote:
yezz wrote:
In triangle ABC, point X is the midpoint of side AC and point Y is the midpoint of side BC. If point R is the midpoint of line segment XC and if point S is the midpoint of line segment YC, what is the area of triangular region RCS ?

(1) The area of triangular region ABX is 32.
(2) The length of one of the altitudes of triangle ABC is 8.



SOL:
This question makes use of the Midpoint theorem in case of triangles. According to the theorem, the segment joining the midpoints of two sides of a triangle is half the length of the third side and the smaller triangle thus formed is similar to the original triangle. The ratio of sides of the smaller tr to the larger tr = 1/2

=> A(smaller tr) : A(Larger tr) = 1:4 why 1:4? is it because the ratio of sides is 1:2? Though im guess this is the reason but still don't understand the reason behind it

From the given info we have:
A(CYX) : A(ABC) = 1:4
A(CSR) : A(CYX) = 1:4
=> A(CSR) = 1/16 * A(ABC) why 1/16th?

ST 1:
A(ABX) = 1/2 * A(ABC) ....... Since they have the same height and the base of ABX is half the base of ABC
Thus from A(ABX), we can calculate A(CSR) => A(ABX)/8 = 4 why divided by 8?
=> SUFFICIENT

ST 2:
We cannot deduce anything from the length of one of the heigths.
=> NOT SUFFICIENT

ANS: A


can someone please explain the colored text above?? Thanks!!!
Senior Manager
Senior Manager
User avatar
Joined: 01 Apr 2010
Posts: 300
Location: Kuwait
Schools: Sloan '16 (M)
GMAT 1: 710 Q49 V37
GPA: 3.2
WE: Information Technology (Consulting)
Followers: 4

Kudos [?]: 54 [0], given: 11

GMAT Tests User
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 21 Apr 2012, 09:09
Think of it in terms of a square, if you half both sides of a square, you make a smaller square that is 1/4 the size of the original. The same idea applies to a triangle. A good exercise is to draw out the shapes while solving the problem to visualize.

It is 1/16 because from area of ABC to XYC its a 1:4 ratio and from XYC to RSC is a 1:4 ratio, so going from ABC to RSC is the multiple of the ratios giving us 1:16 ratio.

We divide by 8 at that point because triangle ABX is 1:2 that of ABC, and since CSR is 4 times smaller than ABX we need to multiply the ratios of 1:2 and 1:4 to give us 1:8 ratio.
Manager
Manager
avatar
Joined: 30 May 2008
Posts: 76
Followers: 0

Kudos [?]: 11 [0], given: 26

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 21 Apr 2012, 09:56
aalba005 wrote:
Think of it in terms of a square, if you half both sides of a square, you make a smaller square that is 1/4 the size of the original. The same idea applies to a triangle. A good exercise is to draw out the shapes while solving the problem to visualize.

It is 1/16 because from area of ABC to XYC its a 1:4 ratio and from XYC to RSC is a 1:4 ratio, so going from ABC to RSC is the multiple of the ratios giving us 1:16 ratio.

We divide by 8 at that point because triangle ABX is 1:2 that of ABC, and since CSR is 4 times smaller than ABX we need to multiply the ratios of 1:2 and 1:4 to give us 1:8 ratio.


Just tried a few example, it seems it is a rule that the area of smaller to area of larger is 1:4

but for the 3rd point about divide by 8, if csr is 4 times smaller than abx, and question gave area of abx, why not just abx/4?
Senior Manager
Senior Manager
User avatar
Joined: 01 Apr 2010
Posts: 300
Location: Kuwait
Schools: Sloan '16 (M)
GMAT 1: 710 Q49 V37
GPA: 3.2
WE: Information Technology (Consulting)
Followers: 4

Kudos [?]: 54 [0], given: 11

GMAT Tests User
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 21 Apr 2012, 12:49
catty2004 wrote:
aalba005 wrote:
Think of it in terms of a square, if you half both sides of a square, you make a smaller square that is 1/4 the size of the original. The same idea applies to a triangle. A good exercise is to draw out the shapes while solving the problem to visualize.

It is 1/16 because from area of ABC to XYC its a 1:4 ratio and from XYC to RSC is a 1:4 ratio, so going from ABC to RSC is the multiple of the ratios giving us 1:16 ratio.

We divide by 8 at that point because triangle ABX is 1:2 that of ABC, and since CSR is 4 times smaller than ABX we need to multiply the ratios of 1:2 and 1:4 to give us 1:8 ratio.


Just tried a few example, it seems it is a rule that the area of smaller to area of larger is 1:4

but for the 3rd point about divide by 8, if csr is 4 times smaller than abx, and question gave area of abx, why not just abx/4?


Because CSR is 8 times smaller than ABX not 4. CRS has 1/2 the base of ABX but also 1/4 the height of ABX (or other way round depending on how you drew it). It is not 1/2 the base and 1/2 the height of ABX.
Manager
Manager
avatar
Joined: 30 May 2008
Posts: 76
Followers: 0

Kudos [?]: 11 [0], given: 26

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 22 Apr 2012, 17:11
aalba005 wrote:
catty2004 wrote:
aalba005 wrote:
Think of it in terms of a square, if you half both sides of a square, you make a smaller square that is 1/4 the size of the original. The same idea applies to a triangle. A good exercise is to draw out the shapes while solving the problem to visualize.

It is 1/16 because from area of ABC to XYC its a 1:4 ratio and from XYC to RSC is a 1:4 ratio, so going from ABC to RSC is the multiple of the ratios giving us 1:16 ratio.

We divide by 8 at that point because triangle ABX is 1:2 that of ABC, and since CSR is 4 times smaller than ABX we need to multiply the ratios of 1:2 and 1:4 to give us 1:8 ratio.


Just tried a few example, it seems it is a rule that the area of smaller to area of larger is 1:4

but for the 3rd point about divide by 8, if csr is 4 times smaller than abx, and question gave area of abx, why not just abx/4?


Because CSR is 8 times smaller than ABX not 4. CRS has 1/2 the base of ABX but also 1/4 the height of ABX (or other way round depending on how you drew it). It is not 1/2 the base and 1/2 the height of ABX.


please dont be frustrated with me......im completely and utterly lost in all these 1:16, 1:4, 1:2......now 1:8.... :oops: :cry:
Expert Post
27 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25206
Followers: 3418

Kudos [?]: 25043 [27] , given: 2702

In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 22 Apr 2012, 21:43
27
This post received
KUDOS
Expert's post
8
This post was
BOOKMARKED
catty2004 wrote:
please dont be frustrated with me......im completely and utterly lost in all these 1:16, 1:4, 1:2......now 1:8.... :oops: :cry:


In triangle ABC, point X is the midpoint of side AC and point Y is the midpoint of side BC. If point R is the midpoint of line segment XC and if point S is the midpoint of line segment YC, what is the area of triangular region RCS ?

Look at the diagram below:
Attachment:
Midsegments.png
Midsegments.png [ 10 KiB | Viewed 14332 times ]
Notice that XY is the midsegment of triangel ABC and RS is the midsemgent of triangle XYC (midsegment is a line segment joining the midpoints of two sides of a triangle).

Several important properties:

1. The midsegment is always half the length of the third side. So, \frac{AB}{XY}=2 and \frac{XY}{RS}=2 --> \frac{AB}{RS}=4;

2. The midsegment always divides a triangle into two similar triangles. So, ABC is similar to XYC and XYC is similar to RSC --> ABC is similar to RSC, and according to above the ratio of their sides is 4:1;

3. If two similar triangles have sides in the ratio \frac{x}{y}, then their areas are in the ratio \frac{x^2}{y^2} (or in another way in two similar triangles, the ratio of their areas is the square of the ratio of their sides: \frac{AREA}{area}=\frac{S^2}{s^2}.). So, since ABC is similar to RSC and the ratio of their sides is 4:1 then \frac{area_{ABC}}{area_{RSC}}=4^2=16, so the area of ABC is 16 times as large as the area of RSC;

4. Each median divides the triangle into two smaller triangles which have the same area. So, since X is the midpoint of AC then BX is the median of ABC and the area of ABX is half of the area of ABC. From the above we have that the area of ABX is 16/2=8 times as large as the area of RSC.

So, to find the area of RSC we need to find the area of ABX.

For more check Triangles chapter of Math Book: math-triangles-87197.html

(1) The area of triangular region ABX is 32 --> the area of RSC=32/8=4. Sufficient.

(2) The length of one of the altitudes of triangle ABC is 8. Only altitude is no use to get the area. Not sufficient.

Answer: A.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 01 Apr 2010
Posts: 300
Location: Kuwait
Schools: Sloan '16 (M)
GMAT 1: 710 Q49 V37
GPA: 3.2
WE: Information Technology (Consulting)
Followers: 4

Kudos [?]: 54 [0], given: 11

GMAT Tests User
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 23 Apr 2012, 09:06
Great explanation and diagram. Thanks!
Intern
Intern
avatar
Joined: 06 Apr 2011
Posts: 13
Followers: 0

Kudos [?]: 1 [0], given: 292

GMAT Tests User
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 29 Sep 2012, 12:23
2 good bunuel..... how would you rate the difficulty level of this question... simply beyond my understanding
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25206
Followers: 3418

Kudos [?]: 25043 [0], given: 2702

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 30 Sep 2012, 03:45
Expert's post
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25206
Followers: 3418

Kudos [?]: 25043 [0], given: 2702

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 07 Jul 2013, 23:53
Expert's post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

To find DS questions by Kudos, sort by Kudos here: gmat-data-sufficiency-ds-141/
To find PS questions by Kudos, sort by Kudos here: gmat-problem-solving-ps-140/

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 05 May 2013
Posts: 27
GMAT 1: 730 Q50 V39
GRE 1: 1480 Q800 V680
Followers: 0

Kudos [?]: 20 [0], given: 5

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 09 Jul 2013, 06:14
Triangles RCS and ACB are similar since they have an angle in common and since RS || AB other angles are equal too. We are told that CS =1/4 BC, thus area of RCS is 1/16 of the area of ACB. Thus (1) is sufficient.

(2) is not sufficient because we do not know the value of the base (nor can it be derived from the other given info) to arrive at an area.

Answer is (A).
Manager
Manager
User avatar
Joined: 10 Apr 2013
Posts: 124
Followers: 2

Kudos [?]: 17 [0], given: 17

Re: GMAT Geometry DS Question [#permalink] New post 20 Sep 2013, 20:14
IMO A,

Soln:

(1)....Area of triangle ABX=1/4 of triangle ABC(X is the mid point of AC)

Therefore area of triangle ABC=4*32

Area of triangle RCS=1/16* area of ABC=8

Hence sufficient

(2)...Length of an altitiude is not sufficient to calculate the area of triangle ABC. Hence insufficient



Regards

Argha
Expert Post
1 KUDOS received
GMAT Pill Instructor
User avatar
Joined: 14 Apr 2009
Posts: 1550
Location: New York, NY
Followers: 287

Kudos [?]: 643 [1] , given: 6

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 15 Nov 2013, 07:53
1
This post received
KUDOS
Expert's post
The key here is to recognize the similar triangles. Notice the ratio of the bases between the 3 similar triangles. Notice the ratio of the diagonal "hypotenuse" of these 3 similar triangles.

Notice how that small triangle is similar to the overall big triangle.

A video solution to this triangle inside a triangle question has been provided here:

http://www.gmatpill.com/gmat-practice-t ... stion/3226

Image
Video solutions to similar questions is available for GMAT Pill customers.
_________________


... and more


Image What's Inside GMAT Pill?

Zeke Lee, GMAT Pill Study Method (Study Less. Score More.)


GMAT Pill Reviews | GMAT PILL Free Practice Test

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 49 [0], given: 134

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 10 Dec 2013, 16:45
In triangle ABC, point X is the midpoint of side AC and point Y is the midpoint of side BC. If point R is the midpoint of line segment XC and if point S is the midpoint of line segment YC, what is the area of triangular region RCS ?

(1) The area of triangular region ABX is 32.

X is the midpoint of AC meaning AX = XC. If ABX = 32 so regardless of the slope of BC and as long as the line from B to X will create two triangles equal in area. (i.e. the area of ABX = CBX) We know there is a segment drawn from midpoint X to Y and midpoint R to S. Because these increasingly small triangles are built with midpoints, we know that their ratios are proportionate to one another and that they are similar. For example, the ratio of the length of SC to YC is 1:2. The ratio of the areas of similar triangles can be found by taking the ratio of lengths (i.e. 1:2) and squaring it. Therefore, the area of RSC to XYC = 1:4.

Ratio of area XYC:ABC = 1:4 (because XYC was created from the midpoints of two of ABC's legs) the ratio of XYC:RSC = 1:4 The ratio of ABC:RSC = 1/16. If we know the area of ABX we can find the area of CBX - they are the same. Sufficient.

(2) The length of one of the altitudes of triangle ABC is 8.
Altitude but it doesn't tell us anything. Altitude doesn't give us midpoints (unless noted) so we can't even determine a single definite area for the triangle. Insufficient

A
Manager
Manager
avatar
Joined: 29 Oct 2013
Posts: 173
Concentration: Finance
GMAT 1: 750 Q48 V46
GMAT 2: Q V0
GRE 1: 327 Q161 V166
GPA: 3.7
WE: Corporate Finance (Retail Banking)
Followers: 3

Kudos [?]: 107 [0], given: 115

GMAT ToolKit User
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 04 Apr 2014, 09:25
Though explanations given so far are great, we really don't need to know the heights of ABC and RSC to solve this question.

The question is testing properties of similar triangles here. There 3 ways to tell if the triangles are similar:

1. AAA (angle angle angle)
All three pairs of corresponding angles are the same.
(We actually need two angles really:)

2. SSS in same proportion (side side side)
All three pairs of corresponding sides are in the same proportion

3. SAS (side angle side)
Two pairs of sides in the same proportion and the included angle equal.

It is this 3rd property that is quite handy here. Two triangles ABC and RSC are similar since RC/AC=SC/BC=1/4 and they include the same angle THETA (as shown in the figure https://drive.google.com/file/d/0B3it2i ... sp=sharing)

1) Tells us that Area(ABX) =32. Since height of triangle ABC is same that of triangle ABX and the base is twice, area (ABC) = 32*2= 64. Since ABC and RSC are similar and their sides are in the ration of 1:4 their ares will be in the ration of 1:16. Sufficient to solve.
2) Tells us one of the altitudes is 8. Since it does not tell which one, insufficient!

Hope it makes sense!
Attachments

IMG_1836.JPG
IMG_1836.JPG [ 1.37 MiB | Viewed 2037 times ]


_________________

Please consider giving 'kudos' if you like my post and want to thank :)

Read about my journey to 750 here - a-non-native-speakers-journey-to-99-le-on-verbal-750overall-171722.html#p1367876


Last edited by MensaNumber on 31 May 2014, 00:54, edited 1 time in total.
Manager
Manager
User avatar
Joined: 10 Mar 2013
Posts: 197
Followers: 0

Kudos [?]: 5 [0], given: 1582

CAT Tests
Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 27 Apr 2014, 13:57
This is a great question, but I don't understand how we can do this in 2 minutes even assuming we knew that ABX = 1/2 * ABC; it took me about 1 minute just to accurately draw the picture. :(
Intern
Intern
avatar
Joined: 30 Mar 2013
Posts: 31
Followers: 0

Kudos [?]: 9 [0], given: 32

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 04 May 2014, 02:10
I only have one question: why isnt the diagram made in such a way that point B is the midpoint of AC. I know the question doesnt say it...but then it could go either way, right? B could be made the mid point, or couldnt be...
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25206
Followers: 3418

Kudos [?]: 25043 [0], given: 2702

Re: In triangle ABC, point X is the midpoint of side AC and [#permalink] New post 04 May 2014, 02:17
Expert's post
usre123 wrote:
I only have one question: why isnt the diagram made in such a way that point B is the midpoint of AC. I know the question doesnt say it...but then it could go either way, right? B could be made the mid point, or couldnt be...


B is a vertex of triangle ABC, it's not a midpoint of any side.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: In triangle ABC, point X is the midpoint of side AC and   [#permalink] 04 May 2014, 02:17
    Similar topics Author Replies Last post
Similar
Topics:
In triangle ABC, point X is the midpoint of side AC and shobuj40 3 26 Dec 2008, 23:33
In triangle ABC, point X is the midpoint of side AC and arjtryarjtry 1 05 Sep 2008, 17:16
1 In triangle ABC, point X is the midpoint of side AC and arjtryarjtry 12 01 Aug 2008, 03:27
In triangle ABC, point X is the midpoint of side AC and ricokevin 5 26 Apr 2007, 05:51
In triangle ABC, point X is the midpoint of side AC and mba4me 4 12 Sep 2004, 00:41
Display posts from previous: Sort by

In triangle ABC, point X is the midpoint of side AC and

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 26 posts ] 



cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.