Find all School-related info fast with the new School-Specific MBA Forum

It is currently 03 Aug 2015, 11:23
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Inequalities and Roots

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5752
Location: Pune, India
Followers: 1446

Kudos [?]: 7620 [1] , given: 186

Re: Inequalities and Roots [#permalink] New post 25 Jul 2013, 20:26
1
This post received
KUDOS
Expert's post
gmatter0913 wrote:
Hi Karishma,

I tried the problem x-1 < sqrt (7-x) as below:

As 7-x is under sqrt, it is +ve. Therefore, 7-x>=0 ; x<=7 ----->(1)

x-1 can be -ve or +ve

When x-1<=0; x<=1 --------> (2)

When x-1>=0; x>=1 --------> (3)

As both sides are +ve, we can square both the sides

(x-1)^2 < 7-x
x^2 -x -6<0
(x-3)(x+2)<0

-2<x<3 ------------>(4)

The answer to this problem is (x<3). I am not sure how to arrive at that from hereon. Could you please help me?


You have done the process correctly. Now you need to understand what this implies.

You got x <= 7

Case 1: x-1< 0
When x-1< 0; x < 1
Note that when x-1 is negative, it will always be less than \(\sqrt{(7-x)}\)
So whenever x<1, the inequality will always hold.

Case 2: x-1 >= 0
If x-1 is non negative, we can square the inequality.
From this, you get -2<x<3.
The inequality holds in this range.

From the two cases, we see that the inequality holds for the range x < 3.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kaplan Promo CodeKnewton GMAT Discount CodesManhattan GMAT Discount Codes
Senior Manager
Senior Manager
avatar
Joined: 12 Mar 2010
Posts: 385
Concentration: Marketing, Entrepreneurship
GMAT 1: 680 Q49 V34
Followers: 2

Kudos [?]: 80 [0], given: 87

Re: Inequalities and Roots [#permalink] New post 26 Jul 2013, 01:05
Hi Karishma,

I have one more doubt on my solution posted earlier.

Quote:
I tried the problem x-1 < sqrt (7-x) as below:

As 7-x is under sqrt, it is +ve. Therefore, 7-x>=0 ; x<=7 ----->(1)

x-1 can be -ve or +ve

When x-1<=0; x<=1 --------> (2)

When x-1>=0; x>=1 --------> (3)

As both sides are +ve, we can square both the sides

(x-1)^2 < 7-x
x^2 -x -6<0
(x-3)(x+2)<0

-2<x<3 ------------>(4) Shouldn't this be 1<=x<3 (as x>=1 is the pre-supposed condition to square them)
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5752
Location: Pune, India
Followers: 1446

Kudos [?]: 7620 [1] , given: 186

Re: Inequalities and Roots [#permalink] New post 26 Jul 2013, 03:23
1
This post received
KUDOS
Expert's post
gmatter0913 wrote:
Hi Karishma,

I have one more doubt on my solution posted earlier.

Quote:
I tried the problem x-1 < sqrt (7-x) as below:

As 7-x is under sqrt, it is +ve. Therefore, 7-x>=0 ; x<=7 ----->(1)

x-1 can be -ve or +ve

When x-1<=0; x<=1 --------> (2)

When x-1>=0; x>=1 --------> (3)

As both sides are +ve, we can square both the sides

(x-1)^2 < 7-x
x^2 -x -6<0
(x-3)(x+2)<0

-2<x<3 ------------>(4) Shouldn't this be 1<=x<3 (as x>=1 is the pre-supposed condition to square them)


Most certainly. The only reason I don't care about the values from -2 to 1 is that these values are already covered in the first case. We know they already hold for the inequality. We only get 1 to 3 extra values and that's what we care about.

In a stand alone question, the presupposed condition must be satisfied (x <= 7 AND x >= 1)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 5725
Followers: 324

Kudos [?]: 64 [0], given: 0

Premium Member
Re: Inequalities and Roots [#permalink] New post 07 Aug 2014, 05:47
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: Inequalities and Roots   [#permalink] 07 Aug 2014, 05:47

Go to page   Previous    1   2   [ 24 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
Inequality Yalephd 1 09 Oct 2010, 11:52
an inequality krishan 1 04 Oct 2010, 02:36
2 Experts publish their posts in the topic Inequality gmatbull 4 05 Jun 2010, 13:19
44 Experts publish their posts in the topic Laura sells encyclopaedias, and her monthly income has two kevincan 22 29 May 2008, 12:54
134 Experts publish their posts in the topic If x/|x|<x which of the following must be true about x? nmohindru 74 15 Aug 2008, 03:06
Display posts from previous: Sort by

Inequalities and Roots

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.