Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Oct 2014, 16:07

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Inequality and absolute value questions from my collection

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
71 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [71] , given: 2849

Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 10:33
71
This post received
KUDOS
Expert's post
133
This post was
BOOKMARKED
Guys I didn't forget your request, just was collecting good questions to post.

So here are some inequality and absolute value questions from my collection. Not every problem below is hard, but there are a few, which are quite tricky. Please provide your explanations along with the answers.

1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-20.html#p653690

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-20.html#p653695

3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653697

4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653709

5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653731

6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653740

7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653783 AND inequality-and-absolute-value-questions-from-my-collection-86939-160.html#p1111747

8. a*b#0. Is |a|/|b|=a/b?
(1) |a*b|=a*b
(2) |a|/|b|=|a/b|

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653789

9. Is n<0?
(1) -n=|-n|
(2) n^2=16

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653792

10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653796

11. Is |x+y|>|x-y|?
(1) |x| > |y|
(2) |x-y| < |x|

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653853

12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653870

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653886

Official answers (OA's) and detailed solutions are in my posts on pages 2 and 3.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Manager
Manager
avatar
Joined: 16 Feb 2010
Posts: 175
Followers: 2

Kudos [?]: 14 [0], given: 10

Re: Inequality and absolute value questions from my collection [#permalink] New post 15 May 2010, 11:09
great collection !!1 thanks bunuel !!
Intern
Intern
avatar
Joined: 12 Mar 2010
Posts: 25
Followers: 0

Kudos [?]: 5 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 21 May 2010, 01:37
Bunuel wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
2x-2y=1 --> x=y+\frac{1}{2}
\frac{x}{y}>1 --> \frac{x-y}{y}>0 --> substitute x --> \frac{1}{y}>0 --> y is positive, and as x=y+\frac{1}{2}, x is positive too. Sufficient.

Answer: C.


I am a little confused on this one . Can the answer be E??

From A:
2x-2y=1
=> x-y= 0.5 INSF

From B
x/y > 1
=> x > y INSF

From A & B
x-y =0.5 and x > y

If x = -0.5 and y = -1 then
x > y
and x - y = (-0.5) - (-1) = -0.5 + 1 = 0.5
Hence both x and y can be negative

If x= 1 and y = 0.5 then
x > y
and x- y = 1 -0.5 = 0.5
Hence both x and y can be positive

Ans = E ??
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [1] , given: 2849

Re: Inequality and absolute value questions from my collection [#permalink] New post 21 May 2010, 02:06
1
This post received
KUDOS
Expert's post
ManishS wrote:
I am a little confused on this one . Can the answer be E??

From A:
2x-2y=1
=> x-y= 0.5 INSF

From B
x/y > 1
=> x > y INSF

From A & B
x-y =0.5 and x > y

If x = -0.5 and y = -1 then
x > y
and x - y = (-0.5) - (-1) = -0.5 + 1 = 0.5
Hence both x and y can be negative

If x= 1 and y = 0.5 then
x > y
and x- y = 1 -0.5 = 0.5
Hence both x and y can be positive

Ans = E ??


Problem with your solution is that the red part is not correct.

\frac{x}{y}>1 does not mean that x>y. If both x and y are positive, then x>y, BUT if both are negative, then x<y.

From (2) \frac{x}{y}>1, we can only deduce that x and y have the same sigh (either both positive or both negative).

When we consider two statement together:

From (1): 2x-2y=1 --> x=y+\frac{1}{2}

From (2): \frac{x}{y}>1 --> \frac{x}{y}-1>0 --> \frac{x-y}{y}>0 --> substitute x from (1) --> \frac{y+\frac{1}{2}-y}{y}>0--> \frac{1}{2y}>0 (we can drop 2 as it won't affect anything here and write as I wrote \frac{1}{y}>0, but basically it's the same) --> \frac{1}{2y}>0 means y is positive, and from (2) we know that if y is positive x must also be positive.

OR: as y is positive and as from (1) x=y+\frac{1}{2}, x=positive+\frac{1}{2}=positive, hence x is positive too.

Answer: C.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 12 Mar 2010
Posts: 25
Followers: 0

Kudos [?]: 5 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 21 May 2010, 02:21
Bunuel wrote:
ManishS wrote:
I am a little confused on this one . Can the answer be E??

From A:
2x-2y=1
=> x-y= 0.5 INSF

From B
x/y > 1
=> x > y INSF

From A & B
x-y =0.5 and x > y

If x = -0.5 and y = -1 then
x > y
and x - y = (-0.5) - (-1) = -0.5 + 1 = 0.5
Hence both x and y can be negative

If x= 1 and y = 0.5 then
x > y
and x- y = 1 -0.5 = 0.5
Hence both x and y can be positive

Ans = E ??


Problem with your solution is that the red part is not correct.

\frac{x}{y}>1 does not mean that x>y. If both x and y are positive, then x>y, BUT if both are negative, then x<y.

From (2) \frac{x}{y}>1, we can only deduce that x and y have the same sigh (either both positive or both negative).

When we consider two statement together:

From (1): 2x-2y=1 --> x=y+\frac{1}{2}

From (2): \frac{x}{y}>1 --> \frac{x}{y}-1>0 --> \frac{x-y}{y}>0 --> substitute x from (1) --> \frac{y+\frac{1}{2}-y}{y}>0--> \frac{1}{2y}>0 (we can drop 2 as it won't affect anything here and write as I wrote \frac{1}{y}>0, but basically it's the same) --> \frac{1}{2y}>0 means y is positive, and from (2) we know that if y is positive x must also be positive.

OR: as y is positive and as from (1) x=y+\frac{1}{2}, x=positive+\frac{1}{2}=positive, hence x is positive too.

Answer: C.

Hope it's clear.

:o :oops:
Thank you so much. This really was helpful. :-)
Manager
Manager
avatar
Joined: 04 Dec 2009
Posts: 71
Location: INDIA
Followers: 2

Kudos [?]: 9 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 14 Jun 2010, 21:47
h2polo wrote:
Bunuel wrote:
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1


Another way of looking at the problem is to ask, is x<0? Because if it is, then we know that y is zero. The only case in which y will not be zero is if x is positive.

Statement 1:

x<0... answers my question above.

SUFFICIENT

Statement 2:

y<1

Because y is an integer, it must be one of the following values: 0, -1, -2, -3...

BUT |x| + x can never be a negative value. The lowest value that it can be is 0.

Hence, y can never be negative and the only possible value it can be then is 0.

SUFFICIENT

ANSWER: D.

----------------------------
hear it is not give that X is also a integer,

S1: if X=1/2 or -1/2 then also Y is integer ,

in this case Ans: B

Is i am missing somthing?
_________________

MBA (Mind , Body and Attitude )

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [0], given: 2849

Re: Inequality and absolute value questions from my collection [#permalink] New post 15 Jun 2010, 12:54
Expert's post
varun2410 wrote:
----------------------------
hear it is not give that X is also a integer,

S1: if X=1/2 or -1/2 then also Y is integer ,

in this case Ans: B

Is i am missing somthing?


OA' s and solutions for all the problems are given in my posts on pages 2 and 3.

OA for this question is D. Below is solution for it.

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Note: y=|x|+x, this expression is never negative. For x>{0} then y=x+x=2x and for x\leq{0} then (when x is negative or zero) then y=-x+x=0.

(1) x<0 --> y=|x|+x=-x+x=0. Sufficient.

(2) y<1, as we concluded y is never negative, and we are given that y is an integer, hence y=0. Sufficient.

Answer: D.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Affiliations: CFA
Joined: 09 Dec 2009
Posts: 37
Schools: Columbia Business School '13
Followers: 0

Kudos [?]: 2 [0], given: 1

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Jun 2010, 14:07
3. is X^2+Y^2 > 4a?

1) (X+Y)^2= 9a

x^2+2xy+Y^2=9a

Insufficient

2) (X-y)^2= a

x^2-2XY+Y^2 = a

Insufficient

Combining 1 & 2, 2(X^2+Y^2)=10a X^2+Y^2 = 5a, thus C
Manager
Manager
avatar
Joined: 15 Mar 2010
Posts: 100
Followers: 1

Kudos [?]: 47 [0], given: 30

Re: Inequality and absolute value questions from my collection [#permalink] New post 05 Jul 2010, 14:23
this thread has helped a lot.. thanks!
_________________

If you like my post, consider giving me a kudos. THANKS!

Manager
Manager
avatar
Joined: 04 Feb 2010
Posts: 200
Followers: 1

Kudos [?]: 28 [0], given: 8

Re: Inequality and absolute value questions from my collection [#permalink] New post 05 Jul 2010, 14:31
Whoa, inequalities and AV's did me in for my first GMAT! Great thread!
Intern
Intern
avatar
Joined: 22 Dec 2009
Posts: 41
Followers: 0

Kudos [?]: 13 [0], given: 13

Re: Inequality and absolute value questions from my collection [#permalink] New post 06 Jul 2010, 23:47
Ive got C for this question..

when both together yields x^2 + y^2 = 5a
why it is E?

Also I dont understand the explanation of below,
St. (1) and (2) together : x^2 + y^2 = 5a
When either x or y is not 0, question stem holds true.
When x and y are both 0, question stem is false.

Can somebody clarify how to solve this please...


sriharimurthy wrote:
Quote:
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a


St. (1) : (x + y)^2 = 9a
x^2 + y^2 + 2xy = 9a
Insufficient.

St. (2) : (x - y)^2 = a
x^2 + y^2 - 2xy = a
Insufficient.

St. (1) and (2) together : x^2 + y^2 = 5a
When either x or y is not 0, question stem holds true.
When x and y are both 0, question stem is false.

Hence insufficient.

Answer : E
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [0], given: 2849

Re: Inequality and absolute value questions from my collection [#permalink] New post 07 Jul 2010, 02:38
Expert's post
gmatJP wrote:
Ive got C for this question..

when both together yields x^2 + y^2 = 5a
why it is E?

Also I dont understand the explanation of below,
St. (1) and (2) together : x^2 + y^2 = 5a
When either x or y is not 0, question stem holds true.
When x and y are both 0, question stem is false.

Can somebody clarify how to solve this please...


sriharimurthy wrote:
Quote:
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a


St. (1) : (x + y)^2 = 9a
x^2 + y^2 + 2xy = 9a
Insufficient.

St. (2) : (x - y)^2 = a
x^2 + y^2 - 2xy = a
Insufficient.

St. (1) and (2) together : x^2 + y^2 = 5a
When either x or y is not 0, question stem holds true.
When x and y are both 0, question stem is false.

Hence insufficient.

Answer : E


OA' s and solutions for all the problems are given in my posts on pages 2 and 3.

OA for this question is E.

When we consider statement together we'll have: x^2+y^2=5a. Now, if x, y and a are different from zero (for example: x=3, y=4 and a=5) then x^2+y^2=5a>4a and the answer to the question is YES, but if x=y=a=0, then x^2+y^2=5a=4a=0 and the answer to the question is NO. Two different answers, thus not sufficient.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 01 Dec 2008
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Jul 2010, 07:03
Hi Bunuel,
If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

y*(x-3)^2 = 0 means x=3 or/and y=0.

I have been thinking that ONLY either of the variables can be zero. i.e x=3 or y=0.
So should i always consider the possibility of both X=3 and Y=0 ?

Can you explain the concept?

Thanks
Vinod
Intern
Intern
avatar
Joined: 01 Dec 2008
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Jul 2010, 07:07
Hi Bunuel,
I forgot to thank you for these great questions and solutions. You are the BEST!!!!

If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

(2) y<1, as we concluded y is never negative, and we are given that y is an integer, hence . Sufficient.

In the above problem, it is very obvious that Y is not equal to 0 from the 2nd statement.
Do you think GMAT questions will have this much obvious statements?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [0], given: 2849

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Jul 2010, 07:21
Expert's post
ramadossvinodh wrote:
Hi Bunuel,
I forgot to thank you for these great questions and solutions. You are the BEST!!!!

If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

(2) y<1, as we concluded y is never negative, and we are given that y is an integer, hence . Sufficient.

In the above problem, it is very obvious that Y is not equal to 0 from the 2nd statement.
Do you think GMAT questions will have this much obvious statements?


The trick here is to conclude that y can not be negative, the rest is relatively easy. And yes, I think you can see such questions on GMAT.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 07 Jul 2010
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink] New post 20 Jul 2010, 01:34
lagomez wrote:
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

answer A
because in number 2 n can be negative or a fraction



Doubt :The question is is |N|<4 ,from statement 2 we can see that n can only be a fraction or its value lies between 0 and 1 like say 1/2 .1/3 etc.same for negative fractions
for example for n =1/2 , 1/(|1/2|)=2 which is greater than n=1/2

Also for n=-1/2,1/(|-1/2|)=2 which is greater than n=-1/2


for negative integers also its true ,say we take n=-3 ,
1/|n|=1/3 which is greater than n=-3



But point to note is that both negative nos and fractions are less than 4 ,so this statement is equally sufficient ,correct me if i am wrong !!!!
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [0], given: 2849

Re: Inequality and absolute value questions from my collection [#permalink] New post 20 Jul 2010, 01:47
Expert's post
amlan009 wrote:
lagomez wrote:
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

answer A
because in number 2 n can be negative or a fraction



Doubt :The question is is |N|<4 ,from statement 2 we can see that n can only be a fraction or its value lies between 0 and 1 like say 1/2 .1/3 etc.same for negative fractions
for example for n =1/2 , 1/(|1/2|)=2 which is greater than n=1/2

Also for n=-1/2,1/(|-1/2|)=2 which is greater than n=-1/2


for negative integers also its true ,say we take n=-3 ,
1/|n|=1/3 which is greater than n=-3



But point to note is that both negative nos and fractions are less than 4 ,so this statement is equally sufficient ,correct me if i am wrong !!!!


\frac{1}{|n|}>n holds true for ALL negative values of n, as if n<0 then LHS=positive>RHS=negative. Hence we don't know whether -4<n<4 is true. That's why statement (2) is not sufficient.

The complete range of n for which \frac{1}{|n|}>n holds true is n<1.

P.S. OA's and solutions for all question are given in my posts on pages 2 and 3.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 21 Jul 2010
Posts: 57
Location: currently in Taiwan
Schools: Top Taiwanese university
Followers: 1

Kudos [?]: 1 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink] New post 22 Jul 2010, 05:36
1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0
First, devide the whole equation by y, and
6*x=x^2+9 => x^2-6*x+9=0 => (x-3)^2=0, x=3, -3
(1) We know x could be 3 oro -3, let's put these two numbers in and see, if x=3, y =6, xy= 18,... and if x=-3, y =0, xy= 0. We can't know for sure what the value of that is. .... Insufficient
(2)Now we know X^3 is less than 0, then x must be less than 0 too. that means it has to be -3, then the answer comes out! .... Sufficient
B

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1
(1)Sufficient
(2)Sufficient, y couldn't be negative, the least it could be is 0.
D
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x+y)^2= x^2+y^2+2x*y
9a=x^2+y^2+2x*y Still Insufficient

(2) (x-y)^2=x^2+y^2-2x*y
a=x^2+y^2-2x*y Insufficient

Sum up equations (1) and (2) , then we can get 10a=2(x^2+y^2) => 5a=x^2+y^2, and we know a is necessarily positive since (x – y)^2 = a
With both factors, we can know x^2 + y^2 >4a

the answer is C

4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1)Insufficient
(2)that only tells you x is greater than y Insufficient
(1) and (2) together: x-y=0.5, and x is great than y, Insufficient
E


5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) we only know y must be positive, insufficient
(2)y coule be -8 or 14 insufficient
BOth (1) and (2): from statement (1) weve learned that y must be a positive number, along with statement (2) we know y is 14
the answer is C

6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

(1)x>-1, we wouldnt know anything about y with that, insufficient
(2)xy>0, if x is less than 0, then y too has to be less than 0 Insufficient

both (1) and (2): xy>0, x>-1, x could be 0 or any positive integer, and even if x=0, y still has to be great than 0 coz xy>0 Sufficient

C

7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

(1)xy<0, that means either x or y is positive and the other negative. seems like x+y= -4, coz x+2=-2-y => x+y=-4, sufficient
(2) Sufficient too, same reasons as above

D

8. a*b#0. Is |a|/|b|=a/b?
(1) |a*b|=a*b
(2) |a|/|b|=|a/b|

(1) a*b has to be positive, a/b has to positive too. Sufficient

(2) we already know that for sure, Insufficient

A

9. Is n<0?
(1) -n=|-n|
(2) n^2=16

(1)since the absolute value must be positive, so we know n has to be negative, or 0 Not Sufficient
(2)ok, n could be 4 or -4, so what? Insufficient
BOth (1) and (2) together: ok, n could be 4 or -4, and it's less than or equal to zero, so it must be -4 Sufficient

C

10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

(1) n>4 or n<-4, |n| must be greater than 4 sufficient
(2)we only know n<1, |n| could be greater than 4 if n < -4 insufficient

A

11. Is |x+y|>|x-y|?
(1) |x| > |y|
(2) |x-y| < |x|

Just leave it for a while


12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s

(1) Not sufficient
(2) Not sufficient
Together: Still Not sufficient

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

ill solve it next time
Manager
Manager
avatar
Joined: 27 May 2010
Posts: 102
Followers: 2

Kudos [?]: 6 [0], given: 13

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Aug 2010, 07:10
An excellent resource. Thanks Bunuel
Current Student
User avatar
Joined: 15 Jul 2010
Posts: 259
GMAT 1: 750 Q49 V42
Followers: 5

Kudos [?]: 86 [0], given: 65

Re: Inequality and absolute value questions from my collection [#permalink] New post 21 Oct 2010, 21:54
Great stuff.

Learned a lot from this set.
_________________

Consider KUDOS if my post was helpful. :-D

My Debrief: 750-q49v42-105591.html#p825487

Intern
Intern
avatar
Joined: 27 Oct 2010
Posts: 7
Followers: 4

Kudos [?]: 1 [0], given: 44

Re: Inequality and absolute value questions from my collection [#permalink] New post 31 Oct 2010, 23:55
Dear Bunuel,

I don't quite understand your explanation on question 4, could you please explain to me again?.
When I solved both statement 1 and 2, the answer can be + or -, therefore, how the answer comes up with only 1 sign?.

Thanks
New member
Re: Inequality and absolute value questions from my collection   [#permalink] 31 Oct 2010, 23:55
    Similar topics Author Replies Last post
Similar
Topics:
2 Inequalities and Absolute value Question Bank gmatsheeba 0 18 Sep 2013, 05:59
1 Experts publish their posts in the topic Good Inequality with absolute value question u0422811 3 22 May 2011, 19:32
1 Inequality involving absolute values english_august 5 08 Nov 2007, 16:14
Inequality and absolute values Futuristic 4 25 Jun 2006, 16:08
Another DS from GMATPrep -- Absolute Value Inequalities lackeym77 7 10 May 2006, 14:31
Display posts from previous: Sort by

Inequality and absolute value questions from my collection

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1  ...  3   4   5   6   7   8   9   10   11  ...  16    Next  [ 320 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.