Find all School-related info fast with the new School-Specific MBA Forum

It is currently 02 Oct 2014, 02:39

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Inequality and absolute value questions from my collection

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
70 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23075
Followers: 3542

Kudos [?]: 27348 [70] , given: 2734

Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 10:33
70
This post received
KUDOS
Expert's post
127
This post was
BOOKMARKED
Guys I didn't forget your request, just was collecting good questions to post.

So here are some inequality and absolute value questions from my collection. Not every problem below is hard, but there are a few, which are quite tricky. Please provide your explanations along with the answers.

1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-20.html#p653690

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-20.html#p653695

3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653697

4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653709

5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653731

6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653740

7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653783 AND inequality-and-absolute-value-questions-from-my-collection-86939-160.html#p1111747

8. a*b#0. Is |a|/|b|=a/b?
(1) |a*b|=a*b
(2) |a|/|b|=|a/b|

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653789

9. Is n<0?
(1) -n=|-n|
(2) n^2=16

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653792

10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653796

11. Is |x+y|>|x-y|?
(1) |x| > |y|
(2) |x-y| < |x|

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653853

12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653870

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

Solution: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653886

Official answers (OA's) and detailed solutions are in my posts on pages 2 and 3.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Kaplan Promo CodeKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23075
Followers: 3542

Kudos [?]: 27348 [1] , given: 2734

Re: Inequality and absolute value questions from my collection [#permalink] New post 22 Feb 2013, 00:27
1
This post received
KUDOS
Expert's post
JJ2014 wrote:
Bunuel wrote:
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) As we are asked to find the value of y, from this statement we can conclude only that y>=2, as LHS is absolute value which is never negative, hence RHS als can not be negative. Not sufficient.

(2) |3 - y| = 11:

y<3 --> 3-y=11 --> y=-8
y>=3 --> -3+y=11 --> y=14

Two values for y. Not sufficient.

(1)+(2) y>=2, hence y=14. Sufficient.

Answer: C.


Bunuel, I think I need some conceptual help. Why should we not solve statement 1 by rewriting the two statements and then adding them together? (Besides the fact that it's time consuming....) I rewrote them and found 3x^2 -10 = y for the positive absolute vlaue, and -3x^2+14=y for the negative abs value. From this, I added them together and got y=4..

Can you please explain what I'm getting wrong conceptually? Thanks so much!!!! I appreciate your kindness.


|x^2-4|=x^2-4 when x^2-4>0;
|x^2-4|=-(x^2-4) when x^2-4<=0.

So, the two equations you'll get from the original are relevant for different ranges of x. Hence, you cannot consider them as two separate equations and solve.

To put it simply: we cannot get the single value of y from 3|x^2 -4| = y - 2. Consider y=2 and x=2 OR y=11 and x=1.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23075
Followers: 3542

Kudos [?]: 27348 [1] , given: 2734

Re: Inequality and absolute value questions from my collection [#permalink] New post 28 Feb 2013, 05:42
1
This post received
KUDOS
Expert's post
piealpha wrote:
7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

The solution seem confusing to me as I see four cases:
a] x<-2, y<-2
b]x>-2, y>-2
c] x<-2, y>-2
d]x>-2, y<-2

case [a] and [b] support x=y while case [c] and [d] support x+y=-4

when xy<0, the case [c]or[d] always do not apply, for example: x=-3 and y=3 would come under case[c] and x=-1 and y=3 would come under case [b] , so it is insufficient.

when x>2 , y<2, we have a case [b] with x=3, y=-1 and a case [d] with x=3,y=-3. So insufficient

when we combine(1)+(2) , we have a case as shown above , it is also insufficient.

So my answer choice would be E.

Can somebody help if I am wrong.


Please read the thread: 11 pages of good discussion.

Links to OA's and solutions are given in the original post: inequality-and-absolute-value-questions-from-my-collection-86939-200.html#p652806

OA for this question is D, not E. Discussed here: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653783 and here: inequality-and-absolute-value-questions-from-my-collection-86939-160.html#p1111747

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Intern
Intern
avatar
Joined: 10 Aug 2012
Posts: 19
Location: India
Followers: 0

Kudos [?]: 5 [1] , given: 12

Re: Inequality and absolute value questions from my collection [#permalink] New post 28 Feb 2013, 07:36
1
This post received
KUDOS
Question 1:

6xy = x^2 y + 9y

y(x^2 -6x +9) = 0

y(x-3)^2 = 0

either y =0, or x=3

statement 1: y-x =3
If y= 0, xy =0, irrespective of x
If x=3, y =6, xy= 18

So, A & D are not correct

statement 2:

x^3 < 0 => x <0

=> x is not equal to 3 so y=0, and xy = 0

Correct Answer B
1 KUDOS received
Intern
Intern
avatar
Joined: 05 May 2013
Posts: 27
GMAT 1: 730 Q50 V39
GRE 1: 1480 Q800 V680
Followers: 0

Kudos [?]: 20 [1] , given: 5

Re: Inequality and absolute value questions from my collection [#permalink] New post 11 Jul 2013, 20:42
1
This post received
KUDOS
Hi johncoffey ,
My two cents- for (1) - it is always useful to start out by factoring an expression if possible, especially when there is a variable in common ("y" in this example). Even though it does make sense to isolate the expression "xy" that we are being asked for- note that in this case that would give us more unknowns on the RHS.
Hope tht helps.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23075
Followers: 3542

Kudos [?]: 27348 [1] , given: 2734

Re: Inequality and absolute value questions from my collection [#permalink] New post 22 Sep 2013, 05:00
1
This post received
KUDOS
Expert's post
StormedBrain wrote:
Bunuel wrote:
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Question basically asks is -4<n<4 true.

(1) n^2>16 --> n>4 or n<-4, the answer to the question is NO. Sufficient.

(2) 1/|n| > n, this is true for all negative values of n, hence we can not answer the question. Not sufficient.

Answer: A.



Hi Bunuel ,

I know saying (1/|n|) < n will be true for all n<0 is quite clear logically. Still I want to reach this conclusion mathematically.

I got swayed solving for n|n| < 1 .


n*|n| < 1.

If n<0, then we'll have -n^2<1 --> n^2>-1. Which is true. So, n*|n| < 1 holds true for any negative value of n.
If n>0, then we'll have n^2<1 --> -1<n<1. So, n*|n| < 1 also holds true for 0<n<1.

Thus 1/|n| > n holds true if n<0 and 0<n<1.

Does this make sense?
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Intern
Intern
User avatar
Joined: 10 Aug 2013
Posts: 20
Followers: 0

Kudos [?]: 5 [1] , given: 17

GMAT ToolKit User
Re: Inequality and absolute value questions from my collection [#permalink] New post 22 Sep 2013, 07:07
1
This post received
KUDOS
Bunuel wrote:
StormedBrain wrote:
Bunuel wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
2x-2y=1 --> x=y+\frac{1}{2}
\frac{x}{y}>1 --> \frac{x-y}{y}>0 --> substitute x --> \frac{1}{y}>0 --> y is positive, and as x=y+\frac{1}{2}, x is positive too. Sufficient.

Answer: C.



Bunuel , Can you please show how we can reach to C using graphical approach ?


4. Are x and y both positive?

The question asks whether point (x, y) is in the first quadrant.

(1) 2x-2y=1 --> draw line y=x-1/2:
Attachment:
graph.png
Not sufficient.


(2) x/y>1 --> Draf line x/y=1. The solutions is the green region:
Attachment:
graph (1).png
Not sufficient.

(1)+(2) Intersection is the portion of the blue line which lies in the first quadrant. Sufficient.

Answer: C.

Hope it helps.



Hey Bunuel,

I am a bit confused. Shouldn't the green area in 3rd quadrant be above the line and below x-axis ?

Lets take a point (-0.5,-1) in the green shaded region , then -0.5/-1 = 1/2 <1.. :roll:
_________________

The First and Last time !!!



BKPL - Below Kudos Poverty Line .....Need your help.

VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1477
Followers: 11

Kudos [?]: 197 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 12:08
Bunuel wrote:

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0


I'm getting B for this one

1. (x-1)^2 <= 1
x can be 0 which would make the question no
or x can be 1/2 which would make the answer yes
so 1 is insufficient

2. x^2 - 1 > 0
means x^2>1
so x<-1 or x>1
both of which make the question no
so sufficient
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1477
Followers: 11

Kudos [?]: 197 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 12:19
Bunuel wrote:


12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s



I'm getting c

1. s can be 3 and r can be 3 which makes question yes
s can be 3 and r can be 2 which makes question no
insufficient

2. r can be 3 and s can be 3 makes question yes
r can be 3 s can be 2 makes question no
insufficient

combining:
|r|>=s means
r>=s or r<=-s

and -s<=r<=s means
-s<=r and r<=s

now we have -s<=r and -s>=r so -s = r or s = r
r>=s and r<=s so s = r
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1477
Followers: 11

Kudos [?]: 197 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 14:33
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

answer A
because in number 2 n can be negative or a fraction
Intern
Intern
avatar
Joined: 19 Oct 2009
Posts: 44
Followers: 0

Kudos [?]: 15 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 19:07
Bunuel, thanks for the questions. Please provide the OA's too. It would be great if you can provide them soon. I am having my GMAT this week, so kinda tensed and impatient. Also, I am yet to give my MGMAT CAT's, so tell me whether should I solve the questions on the forum because if the questions are from the MGMAT CAT's or Gmat Prep then it may overestimate my result. I would appreciate your response. Thanks once again.
Manager
Manager
User avatar
Joined: 13 Aug 2009
Posts: 204
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 75 [0], given: 16

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 20:39
Quality questions as always... Thanks Bunuel! +1
CEO
CEO
User avatar
Joined: 29 Aug 2007
Posts: 2501
Followers: 53

Kudos [?]: 508 [0], given: 19

Re: Inequality and absolute value questions from my collection [#permalink] New post 16 Nov 2009, 21:46
lagomez wrote:
Bunuel wrote:

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0


I'm getting B for this one

1. (x-1)^2 <= 1
x can be 0 which would make the question no
or x can be 1/2 which would make the answer yes
so 1 is insufficient

2. x^2 - 1 > 0
means x^2>1
so x<-1 or x>1
both of which make the question no
so sufficient


(1) (x-1)^2 <= 1
x is 0 to 2.
If x = 2, yes.
If x < 2, No.

(2) x^2 - 1 > 0
x cannot be -1 to 1 i.e. x<-1 or x>1. NSF.

From 1 and 2: x is >1 but <=2. NSF..

E.
_________________

Verbal: new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html


GT

Manager
Manager
User avatar
Joined: 13 Aug 2009
Posts: 204
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 75 [0], given: 16

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 04:18
Bunuel wrote:
1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0


Not sure about this one...

First I reduced the given equation (divided out the y) and solved for x:
6*x*y = x^2*y + 9*y
6*x = x^2 + 9
0 = x^2 - 6*x + 9
0 = (x-3)^2
x = 3

Statement 1:

y-x=3
y-3=3
y=6
xy=3*6=18

SUFFICIENT

Statement 2:

x^3<0

We have no idea what the value of y is from this statement. The only thing that made me look twice was the face that if x^3 is true, then x should be a negative value... did I calculate the value of x incorrectly above?

INSUFFICIENT

ANSWER: A.
Manager
Manager
User avatar
Joined: 13 Aug 2009
Posts: 204
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 75 [0], given: 16

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 04:34
Bunuel wrote:
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1


Another way of looking at the problem is to ask, is x<0? Because if it is, then we know that y is zero. The only case in which y will not be zero is if x is positive.

Statement 1:

x<0... answers my question above.

SUFFICIENT

Statement 2:

y<1

Because y is an integer, it must be one of the following values: 0, -1, -2, -3...

BUT |x| + x can never be a negative value. The lowest value that it can be is 0.

Hence, y can never be negative and the only possible value it can be then is 0.

SUFFICIENT

ANSWER: D.
Manager
Manager
User avatar
Joined: 13 Aug 2009
Posts: 204
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 75 [0], given: 16

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:13
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E
Senior Manager
Senior Manager
avatar
Joined: 16 Apr 2009
Posts: 341
Followers: 1

Kudos [?]: 49 [0], given: 14

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:27
12. Is r=s?

(1) -s<=r<=s

(2) |r|>=s


E – for this - both can be true or false when 0< r < 1
For example , take r as 0.8
S = 0.86 i.e. -0.86 < = 0.8 < = 0.86
|0.8|>= 0.86 i.e. 1 >= 0.86
Combining , any values can be taken , on values > =1 , both r and s
will be same

3. Is x^2 + y^2 > 4a?

(1) (x + y)^2 = 9a

(2) (x – y)^2 = a
C is the answer

Combined both and the equation will give x^2 + y^2 = 5a
_________________

Always tag your question

Manager
Manager
User avatar
Joined: 13 Aug 2009
Posts: 204
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 75 [0], given: 16

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:43
Bunuel wrote:
6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0


Statement 1:

Nothing about y... INSUFFICIENT

Statement 2:

two equations, two unknowns... INSUFFICIENT

Statements 1 and 2:

From x +1 > 0 and the fact that x must be an integer, we know that x must be [0,1,2,3...]

Because we know that xy > 0, we know that x cannot be 0... therefore y must be a positive integer!

SUFFICIENT

ANSWER: C.
Intern
Intern
avatar
Joined: 08 Nov 2009
Posts: 48
Followers: 0

Kudos [?]: 16 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:48
4)
I) 2x-2y=1 so y=x-1/2 NS
II)x/y>0 so x and y have the same sign and the modulus of x has to be larger than the modulus of y NS
Together, to satisfy both clues needs to be larger than 1/2 and x becomes larger than 0; the stem is true, therefore C
Intern
Intern
avatar
Joined: 08 Nov 2009
Posts: 48
Followers: 0

Kudos [?]: 16 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:53
h2polo wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E


Your last choice of numbers: x=1/2, y=-1/2 does not satisfy clue I, because 2*(1/2)-2*(-1/2)=2, not 1
Intern
Intern
avatar
Joined: 08 Nov 2009
Posts: 48
Followers: 0

Kudos [?]: 16 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink] New post 17 Nov 2009, 09:54
ichha148 wrote:
12. Is r=s?

(1) -s<=r<=s

(2) |r|>=s


E – for this - both can be true or false when 0< r < 1
For example , take r as 0.8
S = 0.86 i.e. -0.86 < = 0.8 < = 0.86
|0.8|>= 0.86 i.e. 1 >= 0.86
Combining , any values can be taken , on values > =1 , both r and s
will be same


Taking the modulus does not mean rounding up to the nearest integer; it means removing the negative sign if present. |0.8|<0.86

ichha148 wrote:
3. Is x^2 + y^2 > 4a?

(1) (x + y)^2 = 9a

(2) (x – y)^2 = a
C is the answer

Combined both and the equation will give x^2 + y^2 = 5a


Nowhere it is said that x and y are non-zero. If x and y are zero, 5a=0, therefore a=0, and the stem is false (x^2+y^2=0)

Last edited by Marco83 on 17 Nov 2009, 09:57, edited 1 time in total.
Re: Inequality and absolute value questions from my collection   [#permalink] 17 Nov 2009, 09:54
    Similar topics Author Replies Last post
Similar
Topics:
2 Inequalities and Absolute value Question Bank gmatsheeba 0 18 Sep 2013, 05:59
1 Experts publish their posts in the topic Good Inequality with absolute value question u0422811 3 22 May 2011, 19:32
1 Inequality involving absolute values english_august 5 08 Nov 2007, 16:14
Inequality and absolute values Futuristic 4 25 Jun 2006, 16:08
Another DS from GMATPrep -- Absolute Value Inequalities lackeym77 7 10 May 2006, 14:31
Display posts from previous: Sort by

Inequality and absolute value questions from my collection

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   3   4   5   6   7   8   9   10   11  ...  16    Next  [ 318 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.