Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Is 2(a+b-c) an odd integer? 1. a, b and c are consecutive [#permalink]

Show Tags

07 May 2010, 09:32

1

This post received KUDOS

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

(N/A)

Question Stats:

76% (02:34) correct
24% (01:38) wrong based on 111 sessions

HideShow timer Statistics

Is 2(a+b-c) an odd integer?

1. a, b and c are consecutive numbers 2. b=a+c

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?
_________________

Want to improve your CR: http://gmatclub.com/forum/cr-methods-an-approach-to-find-the-best-answers-93146.html Tricky Quant problems: http://gmatclub.com/forum/50-tricky-questions-92834.html Important Grammer Fundamentals: http://gmatclub.com/forum/key-fundamentals-of-grammer-our-crucial-learnings-on-sc-93659.html

Re: GmatClub Test: Number Properies - I (DS) [#permalink]

Show Tags

07 May 2010, 10:21

ykaiim wrote:

Is 2(a+b-c) an odd integer?

1. a, b and c are consecutive numbers 2. b=a+c

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

You forgot to multiply the -1 by 2

2(a+b-c) 2(0+1-2) 2(-1) = -2

or 2a + 2b - 2c 2(0) + 2(1) - 2(2) 2-4 = -2

Is the question correct? Multiplying anything by 2 will never give an odd so the question states the answer. In which case you wouldn't need to test 1 or 2

Re: GmatClub Test: Number Properies - I (DS) [#permalink]

Show Tags

07 May 2010, 16:07

lagomez wrote:

ykaiim wrote:

Is 2(a+b-c) an odd integer?

1. a, b and c are consecutive numbers 2. b=a+c

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

You forgot to multiply the -1 by 2

2(a+b-c) 2(0+1-2) 2(-1) = -2

or 2a + 2b - 2c 2(0) + 2(1) - 2(2) 2-4 = -2

Is the question correct? Multiplying anything by 2 will never give an odd so the question states the answer. In which case you wouldn't need to test 1 or 2

I agree with lagomez. any number x 2 = Even Something must be wrong

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

\(2(a+b-c)\) can be: odd, in case \(a+b-c=\frac{odd}{2}\); even, in case \(a+b-c=integer\) not an integer at all, in case \(a+b-c\) does not equal to any above. For example: \(a+b-c=\sqrt{2}\) or \(a+b-c=0.3\).

Guess statement (1) is saying: "a, b and c are consecutive integers". The word "consecutive" is redundant here. Just knowing that "a, b and c are integers" is enough to say that this statement is sufficient to answer the question. And the answer would be NO: a, b and c are integers --> \(a+b-c=integer\) --> \(2(a+b-c)=even\).

Statement (2) is clearly not sufficient.
_________________

Re: GmatClub Test: Number Properies - I (DS) [#permalink]

Show Tags

07 May 2010, 17:31

Bunuel wrote:

ykaiim wrote:

Is 2(a+b-c) an odd integer?

1. a, b and c are consecutive numbers 2. b=a+c

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

\(2(a+b-c)\) can be: odd, in case \(a+b-c=\frac{odd}{2}\); even, in case \(a+b-c=integer\) not an integer at all, in case \(a+b-c\) does not equal to any above. For example: \(a+b-c=\sqrt{2}\) or \(a+b-c=0.3\).

Guess statement (1) is saying: "a, b and c are consecutive integers". The word "consecutive" is redundant here. Just knowing that "a, b and c are integers" is enough to say that this statement is sufficient to answer the question. And the answer would be NO: a, b and c are integers --> \(a+b-c=integer\) --> \(2(a+b-c)=even\).

Statement (2) is clearly not sufficient.

What numbers can be substituted for A, B, and C and when multiplied by 2 gives you an odd integer?

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

\(2(a+b-c)\) can be: odd, in case \(a+b-c=\frac{odd}{2}\); even, in case \(a+b-c=integer\) not an integer at all, in case \(a+b-c\) does not equal to any above. For example: \(a+b-c=\sqrt{2}\) or \(a+b-c=0.3\).

Guess statement (1) is saying: "a, b and c are consecutive integers". The word "consecutive" is redundant here. Just knowing that "a, b and c are integers" is enough to say that this statement is sufficient to answer the question. And the answer would be NO: a, b and c are integers --> \(a+b-c=integer\) --> \(2(a+b-c)=even\).

Statement (2) is clearly not sufficient.

What numbers can be substituted for A, B, and C and when multiplied by 2 gives you an odd integer?

Note that stem does not say that a, b and c are integers.

So for example: a=3/2, b=0, c=0 --> \(2(a+b-c)=3\). As I said if \(a+b-c=\frac{odd}{2}\), then \(2(a+b-c)=2*\frac{odd}{2}=odd\). This option is ruled out by statement (1), which says that a, b and c are integers.

Re: GmatClub Test: Number Properies - I (DS) [#permalink]

Show Tags

07 May 2010, 21:13

Thanks Bunuel.

I think I need some revision also on Number Properties.
_________________

Want to improve your CR: http://gmatclub.com/forum/cr-methods-an-approach-to-find-the-best-answers-93146.html Tricky Quant problems: http://gmatclub.com/forum/50-tricky-questions-92834.html Important Grammer Fundamentals: http://gmatclub.com/forum/key-fundamentals-of-grammer-our-crucial-learnings-on-sc-93659.html

Re: GmatClub Test: Number Properies - I (DS) [#permalink]

Show Tags

08 May 2010, 03:56

Bunuel wrote:

ykaiim wrote:

Is 2(a+b-c) an odd integer?

1. a, b and c are consecutive numbers 2. b=a+c

The OA is A. But, I think it is incorrect. Case1: 0,1,2 the a+b-c = -1 (Yes) Case2: 1,2,3 the a+b-c = 0 (No)

Can someone tell me where I am wrong?

\(2(a+b-c)\) can be: odd, in case \(a+b-c=\frac{odd}{2}\); even, in case \(a+b-c=integer\) not an integer at all, in case \(a+b-c\) does not equal to any above. For example: \(a+b-c=\sqrt{2}\) or \(a+b-c=0.3\).

Guess statement (1) is saying: "a, b and c are consecutive integers". The word "consecutive" is redundant here. Just knowing that "a, b and c are integers" is enough to say that this statement is sufficient to answer the question. And the answer would be NO: a, b and c are integers --> \(a+b-c=integer\) --> \(2(a+b-c)=even\).

Statement (2) is clearly not sufficient.

totally right I assumed that a, b and c were integers

Re: Is 2(a+b-c) an odd integer? 1. a, b and c are consecutive [#permalink]

Show Tags

08 Nov 2013, 11:38

If we substitute b = a + c in 2(a+b-c), we get 4a. Now, whatever the value of a, the outcome will always be even. This statement should be sufficient too. In my opinion, the answer should be D.

I am not sure that whether what I have done is correct but, this is what came to my mind when I was attempting this question; I marked D.
_________________

--------------------------------------------------------------- Consider to give me kudos if my post helped you.

If we substitute b = a + c in 2(a+b-c), we get 4a. Now, whatever the value of a, the outcome will always be even. This statement should be sufficient too. In my opinion, the answer should be D.

I am not sure that whether what I have done is correct but, this is what came to my mind when I was attempting this question; I marked D.

Re: Is 2(a+b-c) an odd integer? 1. a, b and c are consecutive [#permalink]

Show Tags

13 May 2016, 00:25

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Is 2(a+b-c) an odd integer? 1. a, b and c are consecutive [#permalink]

Show Tags

26 May 2016, 06:52

Bunuel wrote:

AasaanHai wrote:

If we substitute b = a + c in 2(a+b-c), we get 4a. Now, whatever the value of a, the outcome will always be even. This statement should be sufficient too. In my opinion, the answer should be D.

I am not sure that whether what I have done is correct but, this is what came to my mind when I was attempting this question; I marked D.

If we substitute b = a + c in 2(a+b-c), we get 4a. Now, whatever the value of a, the outcome will always be even. This statement should be sufficient too. In my opinion, the answer should be D.

I am not sure that whether what I have done is correct but, this is what came to my mind when I was attempting this question; I marked D.

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Since my last post, I’ve got the interview decisions for the other two business schools I applied to: Denied by Wharton and Invited to Interview with Stanford. It all...

Marketing is one of those functions, that if done successfully, requires a little bit of everything. In other words, it is highly cross-functional and requires a lot of different...