Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: algebra problem [#permalink]
21 Mar 2011, 22:23

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

x^2 - 2x + A >0 x^2-2x +1 +A-1>0 (X-1)^2 -1 >-A A>1-(X-1)^2 (flip the sign) if x is 1/2 A is positive no ... if x is 5 , A>-15 so A could be either positive or negative

2 A x^2 +1>0 Ax^2>-1 A=-1/2 ,x=1 -1/2>-1 true A=1 X=2 4>-1 true.. A could be negative eg (-1/2) or positive ... Insufficient..

Re: algebra problem [#permalink]
22 Mar 2011, 01:58

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

We need to answer the question "Is A positive?"

Statement 1 says x^2 - 2x + A is positive for all x. Hence A can only take values that make the expression x^2 - 2x + A positive for all x.

Now, the term x^2-2x will be always positive for all x greater than 2. Also, it will always be positive for all x less than zero and it will be zero in case x=0. So for all x greater than or equal to 2 and less than or equal to zero, A can be negative or positive and still the expression can be positive overall depending on magnitude of a and A. So, this does not give us a condition on A.

Lets see when x lies between 0 and 2. In such a case, for both x =0 and x=2, the expression x^2-2x is zero and hence A needs to be positive. Between x=0 and x=2, the expression remains negative with minimum value of -1 at x=1. Hence, A needs to be greater than +1 to ensure that x^2-2x+A is greater than zero for all x when x lies between 0 and 2.

So, we have seen that for all x, the expression x^2 - 2x + A is positive if and only if A is greater than 1 always. Hence we can answer the question "Is A positive?" in affirmative and hence sufficient.

Statement 2 says that A*x^2+1 is always positive for all x. Clearly, x^2 is always positive. So, if A is always positive than A*x^2+1 is always positive. However, A*x^2+1is always positive also when A=0. Hence, Statement 2) will hold when A is 0 or positive and hence we cannot answer for sure the question "Is A positive?". Hence, insufficient.

Re: algebra problem [#permalink]
22 Mar 2011, 18:40

I agree with beyondgmatscore. A has to be positive to satisfy the expression for all values of x.

beyondgmatscore wrote:

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

We need to answer the question "Is A positive?"

Statement 1 says x^2 - 2x + A is positive for all x. Hence A can only take values that make the expression x^2 - 2x + A positive for all x.

Now, the term x^2-2x will be always positive for all x greater than 2. Also, it will always be positive for all x less than zero and it will be zero in case x=0. So for all x greater than or equal to 2 and less than or equal to zero, A can be negative or positive and still the expression can be positive overall depending on magnitude of a and A. So, this does not give us a condition on A.

Lets see when x lies between 0 and 2. In such a case, for both x =0 and x=2, the expression x^2-2x is zero and hence A needs to be positive. Between x=0 and x=2, the expression remains negative with minimum value of -1 at x=1. Hence, A needs to be greater than +1 to ensure that x^2-2x+A is greater than zero for all x when x lies between 0 and 2.

So, we have seen that for all x, the expression x^2 - 2x + A is positive if and only if A is greater than 1 always. Hence we can answer the question "Is A positive?" in affirmative and hence sufficient.

Statement 2 says that A*x^2+1 is always positive for all x. Clearly, x^2 is always positive. So, if A is always positive than A*x^2+1 is always positive. However, A*x^2+1is always positive also when A=0. Hence, Statement 2) will hold when A is 0 or positive and hence we cannot answer for sure the question "Is A positive?". Hence, insufficient.

Re: algebra problem [#permalink]
22 Mar 2011, 19:30

beyondgmatscore wrote:

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

We need to answer the question "Is A positive?"

Statement 1 says x^2 - 2x + A is positive for all x. Hence A can only take values that make the expression x^2 - 2x + A positive for all x.

Now, the term x^2-2x will be always positive for all x greater than 2. Also, it will always be positive for all x less than zero and it will be zero in case x=0. So for all x greater than or equal to 2 and less than or equal to zero, A can be negative or positive and still the expression can be positive overall depending on magnitude of a and A. So, this does not give us a condition on A.

Lets see when x lies between 0 and 2. In such a case, for both x =0 and x=2, the expression x^2-2x is zero and hence A needs to be positive. Between x=0 and x=2, the expression remains negative with minimum value of -1 at x=1. Hence, A needs to be greater than +1 to ensure that x^2-2x+A is greater than zero for all x when x lies between 0 and 2.

So, we have seen that for all x, the expression x^2 - 2x + A is positive if and only if A is greater than 1 always. Hence we can answer the question "Is A positive?" in affirmative and hence sufficient.

Statement 2 says that A*x^2+1 is always positive for all x. Clearly, x^2 is always positive. So, if A is always positive than A*x^2+1 is always positive. However, A*x^2+1is always positive also when A=0. Hence, Statement 2) will hold when A is 0 or positive and hence we cannot answer for sure the question "Is A positive?". Hence, insufficient.

Answer is A.

Assume x =5 x^2 - 2x=> 25-10 =15 for x^2 - 2x + A to be positive A can be either positive no or negative no if A= -1 (Statement A is still valid x^2 - 2x + A>0) if A=1 (Statement A is still valid x^2 - 2x + A>0) A can be either positive no or negative no ..So How could you say A>0 ....Am I missing something ?

Re: algebra problem [#permalink]
22 Mar 2011, 21:34

Onell wrote:

beyondgmatscore wrote:

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

We need to answer the question "Is A positive?"

Statement 1 says x^2 - 2x + A is positive for all x. Hence A can only take values that make the expression x^2 - 2x + A positive for all x.

Now, the term x^2-2x will be always positive for all x greater than 2. Also, it will always be positive for all x less than zero and it will be zero in case x=0. So for all x greater than or equal to 2 and less than or equal to zero, A can be negative or positive and still the expression can be positive overall depending on magnitude of a and A. So, this does not give us a condition on A.

Lets see when x lies between 0 and 2. In such a case, for both x =0 and x=2, the expression x^2-2x is zero and hence A needs to be positive. Between x=0 and x=2, the expression remains negative with minimum value of -1 at x=1. Hence, A needs to be greater than +1 to ensure that x^2-2x+A is greater than zero for all x when x lies between 0 and 2.

So, we have seen that for all x, the expression x^2 - 2x + A is positive if and only if A is greater than 1 always. Hence we can answer the question "Is A positive?" in affirmative and hence sufficient.

Statement 2 says that A*x^2+1 is always positive for all x. Clearly, x^2 is always positive. So, if A is always positive than A*x^2+1 is always positive. However, A*x^2+1is always positive also when A=0. Hence, Statement 2) will hold when A is 0 or positive and hence we cannot answer for sure the question "Is A positive?". Hence, insufficient.

Answer is A.

Assume x =5 x^2 - 2x=> 25-10 =15 for x^2 - 2x + A to be positive A can be either positive no or negative no if A= -1 (Statement A is still valid x^2 - 2x + A>0) if A=1 (Statement A is still valid x^2 - 2x + A>0) A can be either positive no or negative no ..So How could you say A>0 ....Am I missing something ?

Onell - you are right in deducing that for x=5 A can be either positive or negative. In fact, if you see my response, I have reached a similar conclusion as well. However, we need the value of A for which the expression x^2 - 2x + Ais positive for ALL x. As I explained earlier, for x between 0 and 2, this can be true only if A is greater than 1. So, x^2 - 2x + A is positive for ALL x only when A is greater than 1. For some x, it can be positive even when A is negative, but it is positive for ALL x if and only if A is greater than +1.

Re: algebra problem [#permalink]
07 Apr 2011, 08:57

The first statement can be solved with some calculus. Differentiating x^2 - 2x + A yields 2x - 2. If we assume 2x - 2 = 0 and x = 1, we know that the quadratic curve is at its minimum (lowest value possible) when x = 1.

Therefore, substituting x = 1 into x^2 - 2x + A, we get -1 + A. This is the lowest value possible and since -1 + A > 0 (always positive), A > 1 and always positive.

So it's sufficient.

I'm inclined to say the second statement is true as well. If A < 0, the quadratic curve will have a maximum, which means it will definitely go negative, hence contradicting the statement ("(A*x^2) + 1 is +ve for all x "). The only way to make it always positive is if A > 0.

So I personally think the answer should be D.

I don't have any software to plot graphs right now, but if anyone fancies plotting quadratic graphs they might be able to show this.

Re: algebra problem [#permalink]
07 Apr 2011, 21:54

1

This post received KUDOS

oster wrote:

The first statement can be solved with some calculus. Differentiating x^2 - 2x + A yields 2x - 2. If we assume 2x - 2 = 0 and x = 1, we know that the quadratic curve is at its minimum (lowest value possible) when x = 1.

Therefore, substituting x = 1 into x^2 - 2x + A, we get -1 + A. This is the lowest value possible and since -1 + A > 0 (always positive), A > 1 and always positive.

So it's sufficient.

I'm inclined to say the second statement is true as well. If A < 0, the quadratic curve will have a maximum, which means it will definitely go negative, hence contradicting the statement ("(A*x^2) + 1 is +ve for all x "). The only way to make it always positive is if A > 0.

So I personally think the answer should be D.

I don't have any software to plot graphs right now, but if anyone fancies plotting quadratic graphs they might be able to show this.

Your reasoning for the second statement is incorrect. The only way to make it always positive is if A > 0 OR A = 0. As, at A=0, the value of expression is 1 - always positive. So, A can be zero or positive and hence insufficient.

Re: algebra problem [#permalink]
08 Apr 2011, 01:52

beyondgmatscore wrote:

Your reasoning for the second statement is incorrect. The only way to make it always positive is if A > 0 OR A = 0. As, at A=0, the value of expression is 1 - always positive. So, A can be zero or positive and hence insufficient.

Re: algebra problem [#permalink]
08 Apr 2011, 06:28

asmit123 wrote:

Is A positive?

1. x^2 - 2x + A is +ve for all x 2. (A*x^2) + 1 is +ve for all x

I've posted about this question a couple of times. Many people solve this backwards and arrive at the wrong answer (those test takers relying on 'number picking' strategies almost always answer this question incorrectly). The important word in each of the two statements is 'all'. In Statement 1, x^2 - 2x + A is positive not just for some value of x; it must be positive for EVERY value of x. In particular, it's positive when x=0, so substituting x=0, we learn instantly that A is positive and Statement 1 is sufficient.

Statement 2 is also almost sufficient. It is only insufficient because of a technicality: it's possible that A=0.

So the answer is A. _________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Private GMAT Tutor based in Toronto

gmatclubot

Re: algebra problem
[#permalink]
08 Apr 2011, 06:28