Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

(1) m - 3z > 0. Insufficient on its own. (2) 4z - m > 0. Insufficient on its own.

(1)+(2) Remember we can add inequalities with the sign in the same direction --> \(m-3z+4z-m>0\) --> \(z>0\), so \(z\) is positive. From (1) \(m>3z=positive\), so \(m\) is positive too (\(m\) is more than some positive number \(3z\), so it's positive) --> \(m+z=positive+positive>0\). Sufficient.

When I took both statements and in my head made the stipulations, I ended up with 3z<m<4z, but that did not yield the right answer. Can you tell me what I am missing doing this vs. actually adding the equations?

(1) m - 3z > 0. Insufficient on its own. (2) 4z - m > 0. Insufficient on its own.

(1)+(2) Remember we can add inequalities with the sign in the same direction --> \(m-3z+4z-m>0\) --> \(z>0\), so \(z\) is positive. From (1) \(m>3z=positive\), so \(m\) is positive too (\(m\) is more than some positive number \(3z\), so it's positive) --> \(m+z=positive+positive>0\). Sufficient.

When I took both statements and in my head made the stipulations, I ended up with 3z<m<4z, but that did not yield the right answer. Can you tell me what I am missing doing this vs. actually adding the equations?

You missed the last step: from 3z<4z it follows that z>0, thus 3z=positive --> (3z=positive)<m --> m=positive --> m+z=positive. _________________

(1) m - 3z > 0. Insufficient on its own. (2) 4z - m > 0. Insufficient on its own.

(1)+(2) Remember we can add inequalities with the sign in the same direction --> \(m-3z+4z-m>0\) --> \(z>0\), so \(z\) is positive. From (1) \(m>3z=positive\), so \(m\) is positive too (\(m\) is more than some positive number \(3z\), so it's positive) --> \(m+z=positive+positive>0\). Sufficient.

I have a doubt: 1 & 2 are obviously insuff. Combining 1 & 2 we get z>0. Now according to 1) m-3z>0 (so we get m>0). My doubt starts here 2) says 4z-m>0 so when z>0, m>0 or m<0. For eg z=2 & m=-2, we will still get 4z-m>0 So according to me answer should be E or am I missing something here.

(1) m - 3z > 0. Insufficient on its own. (2) 4z - m > 0. Insufficient on its own.

(1)+(2) Remember we can add inequalities with the sign in the same direction --> \(m-3z+4z-m>0\) --> \(z>0\), so \(z\) is positive. From (1) \(m>3z=positive\), so \(m\) is positive too (\(m\) is more than some positive number \(3z\), so it's positive) --> \(m+z=positive+positive>0\). Sufficient.

I have a doubt: 1 & 2 are obviously insuff. Combining 1 & 2 we get z>0. Now according to 1) m-3z>0 (so we get m>0). My doubt starts here 2) says 4z-m>0 so when z>0, m>0 or m<0. For eg z=2 & m=-2, we will still get 4z-m>0 So according to me answer should be E or am I missing something here.

Bunuel my line of reasoning was that the numbers are aligned like 3z<m<4z. Now m falls between 3z and 4z which can only be possible if both m and z are positive ( as the multiplier is positive). Now adding two positive numbers will always be more than 0 . Hence both are sufficient to prove

Re: Is m+z > 0 (1) m-3z > 0 (2) 4z-m > 0 [#permalink]
30 Nov 2014, 05:48

Bunuel wrote:

smitakokne wrote:

Is m+z > 0

1. m-3z > 0 2. 4z-m > 0

OA : C

Need help in underdstanding how we arrive at C.

(1) m - 3z > 0. Insufficient on its own. (2) 4z - m > 0. Insufficient on its own.

(1)+(2) Remember we can add inequalities with the sign in the same direction --> \(m-3z+4z-m>0\) --> \(z>0\), so \(z\) is positive. From (1) \(m>3z=positive\), so \(m\) is positive too (\(m\) is more than some positive number \(3z\), so it's positive) --> \(m+z=positive+positive>0\). Sufficient.

The Stanford interview is an alumni-run interview. You give Stanford your current address and they reach out to alumni in your area to find one that can interview you...

Originally, I was supposed to have an in-person interview for Yale in New Haven, CT. However, as I mentioned in my last post about how to prepare for b-school interviews...

Interested in applying for an MBA? In the fourth and final part of our live QA series with guest expert Chioma Isiadinso, co-founder of consultancy Expartus and former admissions...