Find all School-related info fast with the new School-Specific MBA Forum

It is currently 24 Oct 2014, 05:46

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is product 2*x*5*y an even integer?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Joined: 10 May 2009
Posts: 68
Followers: 1

Kudos [?]: 12 [0], given: 11

Is product 2*x*5*y an even integer? [#permalink] New post 29 May 2009, 03:53
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

37% (02:11) correct 63% (01:04) wrong based on 57 sessions
Is product 2*x*5*y an even integer?

(1) 2 + x + 5 + y is an even integer
(2) x - y is an odd integer
[Reveal] Spoiler: OA
1 KUDOS received
SVP
SVP
User avatar
Joined: 30 Apr 2008
Posts: 1893
Location: Oklahoma City
Schools: Hard Knocks
Followers: 30

Kudos [?]: 440 [1] , given: 32

Re: Even DS [#permalink] New post 29 May 2009, 08:04
1
This post received
KUDOS
This question makes you realize that you have to have an "even integer". If the question were merely, "is this even?" you would not need the statements to answer it. If you have 2 * x * 5 * y, then you have 10xy. Generally, you need to know if you have odd * odd or odd * even, or even * even in order to know if the product is even, but when you have 10 * any number, the result will always be even because 2 of the 3 scenarios results in an even number. {1) odd*odd=odd 2) even*odd = even 3) even*even=even} If you have even just 1 even number, the product will always be even. So, since we know that there is a 2 involved, the product will always be even.

But the key is "integer", so we don't know if x = 1.15 or any other decimal which may or may not give an even integer.

Statement 1) Insuffucient. 2 + 2.5 + 5 + 2.5 = even integer of 12. But if you take 2 * 2.5 * 5 * 2.5, that gives you 62.5, not an integer at all, so it could not possibly be an even integer, but the sum is even, therefore, #1 insufficient.

2) Insufficient because if x = 3.5 and y = 0.5, then the different is 3, an odd integer, but if you take the product of 2 * 3.5 * .5 * 5, you don't get an integer at all.

Together) Insufficient. If, from statement 1, you add 2 + 5 =7, then, in order to make Statement 1 true, that the sum is an even integer, the sum of x + y must be odd, so you have odd + odd = even.

Any numbers that will sum an odd integer will never have a difference of an odd integer. 4+2=6, but 4-2=2. Take this principle to the bank. So, these statements cannot both be true at the same time.

I don't think this is a good question, because GMAT will not write questions that have contradictory statements. While I believe the answer to be E, I think the question is flawed.

prinits wrote:
Is product 2*x*5*y an even integer?

1.2 + x + 5 + y is an even integer
2.x - y is an odd integer

Please explain.I could not follow the explanation given in GMAT Club test.

_________________

------------------------------------
J Allen Morris
**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

CEO
CEO
User avatar
Joined: 29 Aug 2007
Posts: 2500
Followers: 54

Kudos [?]: 512 [0], given: 19

Re: Even DS [#permalink] New post 29 May 2009, 09:19
prinits wrote:
Is product 2*x*5*y an even integer?

1) 2 + x + 5 + y is an even integer
2) x - y is an odd integer

Please explain.I could not follow the explanation given in GMAT Club test.


Is product 2*x*5*y (or 10xy) an even integer? Agree with Allen.

1) 2+x+5+y is an even integer. 2+x+5+y=7+ (x+y),
where x and y could be integers or fractions but (x+y) must be odd. NSF.

2) x - y is an odd integer = > here also x and y could be integers or fractions. NSF.

From 1 and 2, it is not possible to have (x+y) and (x-y) must be odd. So the question is not properly designed.
_________________

Verbal: new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html


GT

Current Student
avatar
Joined: 13 Jan 2009
Posts: 374
Location: India
Followers: 19

Kudos [?]: 69 [0], given: 1

Re: Even DS [#permalink] New post 29 May 2009, 15:38
GMAT TIGER wrote:
prinits wrote:
Is product 2*x*5*y an even integer?

1) 2 + x + 5 + y is an even integer
2) x - y is an odd integer

Please explain.I could not follow the explanation given in GMAT Club test.


Is product 2*x*5*y (or 10xy) an even integer? Agree with Allen.

1) 2+x+5+y is an even integer. 2+x+5+y=7+ (x+y),
where x and y could be integers or fractions but (x+y) must be odd. NSF.
2) x - y is an odd integer = > here also x and y could be integers or fractions. NSF.

From 1 and 2, it is not possible to have (x+y) and (x-y) must be odd. So the question is not properly designed.


Why is not possible to have x and y which satisfy this?


what if x is any odd number and y is 0?
or x=2 and y= 1
SVP
SVP
User avatar
Joined: 30 Apr 2008
Posts: 1893
Location: Oklahoma City
Schools: Hard Knocks
Followers: 30

Kudos [?]: 440 [0], given: 32

Re: Even DS [#permalink] New post 29 May 2009, 17:56
This is why it is not possible to have X and Y satisfy this.

For this to be the type of question that the GMAT would actually use, it must be possible for the statements to both be true with a single set of numbers. There exists sets of numbers for which both statements will not be true, but for us to answer the question either "yes" or "no" requires that we be able to say "ALWAYS YES" or "ALWAYS NO". We cannot do that here.

In your example of x =2 and 1=1:

Statement 1:
2 + 2 + 5 + 1 = 10, yes that's an even number.

Statement 2:

2 - 1 = 1, and yes this is an odd number.

The test in these types of questions is not can we find 1 set that WILL work, but can we find a set that WILL NOT. If we know there is a set that will not work, then we cannot answer the question, becasue there is an implied "always" to the questions. Is product 2 * x * 5 * y (always) an even integer?

what if x is any odd number and y is 0?
or x=2 and y= 1

hemantsood wrote:
GMAT TIGER wrote:
prinits wrote:
Is product 2*x*5*y an even integer?

1) 2 + x + 5 + y is an even integer
2) x - y is an odd integer

Please explain.I could not follow the explanation given in GMAT Club test.


Is product 2*x*5*y (or 10xy) an even integer? Agree with Allen.

1) 2+x+5+y is an even integer. 2+x+5+y=7+ (x+y),
where x and y could be integers or fractions but (x+y) must be odd. NSF.
2) x - y is an odd integer = > here also x and y could be integers or fractions. NSF.

From 1 and 2, it is not possible to have (x+y) and (x-y) must be odd. So the question is not properly designed.


Why is not possible to have x and y which satisfy this?


what if x is any odd number and y is 0?
or x=2 and y= 1

_________________

------------------------------------
J Allen Morris
**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23408
Followers: 3611

Kudos [?]: 28888 [4] , given: 2860

Re: Even DS [#permalink] New post 09 Sep 2009, 04:14
4
This post received
KUDOS
Expert's post
Is product 2*x*5*y an even integer?

1) 2 + x + 5 + y is an even integer
2) x - y is an odd integer

Can someone post OA for this Q?

I think the above reasoning is not correct and the answer is C.

Question: 2*x*5*y=even. As there is 2 as a multiple, then this expression will be even if 5xy=integer. Basically we are asked is 5xy=integer true?

Note that x and y may not be integers for 2*x*5*y to be even (example x=\frac{7}{9} and y=\frac{9}{7}) BUT if they are integers then 2*x*5*y is even.


(1) 2+x+5+y=even --> 7+x+y=even --> x+y=odd. Not sufficient. (x=1 and y=2 answer YES BUT x=1.3 and y=1.7 answer NO)

(2) x-y=odd. Not sufficient. (x=1 and y=2 answer YES BUT x=1.3 and y=0.3 answer NO)

(1)+(2) Sum (1) and (2) (x+y)+(x-y)=odd_1+odd_2 --> 2x=even --> x=integer --> y=integer --> Both x and y are integers. Hence sufficient.

Answer: C.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 02 Aug 2009
Posts: 269
Followers: 3

Kudos [?]: 85 [1] , given: 1

Re: Even DS [#permalink] New post 09 Sep 2009, 04:43
1
This post received
KUDOS
I wud also go for C....
SI gives x+y to be an odd no.....
SII gives x-y to be an odd no.....
both these conditions are satisfied only when both x anf y are integer themselves....
if u add two fractions with denominator 2, u get only one of the two(sum or difference) as odd and other as even ....
any other denominator generally dont give both sum and difference as integers...
so both Statements together satisfy x and y to be integers....hence sufficient..
Manager
Manager
avatar
Joined: 13 May 2010
Posts: 114
Followers: 1

Kudos [?]: 17 [0], given: 7

Gmat club test 16 [#permalink] New post 12 Jun 2010, 11:08
Is the product 2*x*5*y an even integer?

1. 2 + x + 5 + y is an even integer
2. x - y is an odd integer

OA is
[Reveal] Spoiler:
c


Please explain.
Intern
Intern
avatar
Joined: 01 Jun 2010
Posts: 23
Location: United States
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
GPA: 3.53
Followers: 0

Kudos [?]: 9 [0], given: 9

Re: Even DS [#permalink] New post 12 Jun 2010, 16:52
If I understand correctly, x+y=odd and x-y=odd are only both always true if x and y are integers. If fractions are involved, the statments contradict because 1/3+2/3=1=odd but 1/3-2/3=-1/3=neither odd nor even. However, I am confused by jallen's statement:

"Any numbers that will sum an odd integer will never have a difference of an odd integer. 4+2=6, but 4-2=2"

4+3 sum odd (7) and have an odd difference (1), right? And why are positive #s used in the example? I assume jallen knows what he is talking about and that I am missing something.
_________________

HBS Class of 2014

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23408
Followers: 3611

Kudos [?]: 28888 [1] , given: 2860

Re: Even DS [#permalink] New post 12 Jun 2010, 17:19
1
This post received
KUDOS
Expert's post
alphastrike wrote:
If I understand correctly, x+y=odd and x-y=odd are only both always true if x and y are integers. If fractions are involved, the statments contradict because 1/3+2/3=1=odd but 1/3-2/3=-1/3=neither odd nor even. However, I am confused by jallen's statement:

"Any numbers that will sum an odd integer will never have a difference of an odd integer. 4+2=6, but 4-2=2"

4+3 sum odd (7) and have an odd difference (1), right? And why are positive #s used in the example? I assume jallen knows what he is talking about and that I am missing something.


jallenmorris's solution is not right:

jallenmorris wrote:
This question makes you realize that you have to have an "even integer". If the question were merely, "is this even?" you would not need the statements to answer it.


Only integers can be even or odd. There is no difference in asking "is x even integer" and "is x even".

jallenmorris wrote:
Any numbers that will sum an odd integer will never have a difference of an odd integer. 4+2=6, but 4-2=2. Take this principle to the bank. So, these statements cannot both be true at the same time.


x=3=odd and y=2=even --> x+y=5=odd and x-y=1=odd OR x=6=even and y=1=odd --> x+y=7=odd and x-y=5=odd.

alphastrike wrote:
If I understand correctly, x+y=odd and x-y=odd are only both always true if x and y are integers.


You are absolutely right. Pleas refer to my post for solution for this problem.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Status: I am Midnight's Child !
Joined: 04 Dec 2009
Posts: 148
WE 1: Software Design and Development
Followers: 1

Kudos [?]: 26 [0], given: 11

Re: Even DS [#permalink] New post 02 Feb 2011, 10:06
I disagree with the OA mentioned above in this problem.

The condition when either x or y = 0 is not considered at all.

look at this example,

consider x=1 and y=0

(1) 2+5+1+0 = 8 (Even) Hence (A) is satisfied
(2) 1-0 =1 (Odd) Hence (B) is also satisfied

The product 2*5*1*0 = 0 (Not an even integer)

Similarly consider x=2 and y=1

(1) 2+5+2+1 = 10 (Even) A is satisfied
(2) 2-1 = 1 (Odd) B is Satisfied
Product 2*5*2*1 = 20 (Even integer)


Hence , OA is E and definitely not C . :twisted:
_________________

Argument : If you love long trips, you love the GMAT.
Conclusion : GMAT is long journey.

What does the author assume ?
Assumption : A long journey is a long trip.


Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23408
Followers: 3611

Kudos [?]: 28888 [0], given: 2860

Re: Even DS [#permalink] New post 02 Feb 2011, 10:12
Expert's post
maddy2u wrote:
I disagree with the OA mentioned above in this problem.

The condition when either x or y = 0 is not considered at all.

look at this example,

consider x=1 and y=0

(1) 2+5+1+0 = 8 (Even) Hence (A) is satisfied
(2) 1-0 =1 (Odd) Hence (B) is also satisfied

The product 2*5*1*0 = 0 (Not an even integer)

Similarly consider x=2 and y=1

(1) 2+5+2+1 = 10 (Even) A is satisfied
(2) 2-1 = 1 (Odd) B is Satisfied
Product 2*5*2*1 = 20 (Even integer)


Hence , OA is E and definitely not C . :twisted:


OA for this question is C.

You should know that: zero is an even integer.

An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder.
An even number is an integer of the form n=2k, where k is an integer.

So for k=0 --> n=2*0=0.

For more on number properties check: math-number-theory-88376.html
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Status: I am Midnight's Child !
Joined: 04 Dec 2009
Posts: 148
WE 1: Software Design and Development
Followers: 1

Kudos [?]: 26 [0], given: 11

Re: Even DS [#permalink] New post 02 Feb 2011, 10:28
Thanks for pointing that one out Bunuel. I think that property evaded me .
_________________

Argument : If you love long trips, you love the GMAT.
Conclusion : GMAT is long journey.

What does the author assume ?
Assumption : A long journey is a long trip.


Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: Even DS   [#permalink] 02 Feb 2011, 10:28
    Similar topics Author Replies Last post
Similar
Topics:
9 Experts publish their posts in the topic Is product 2*x*5*y an even integer? nglekel 13 22 Feb 2012, 06:33
7 Experts publish their posts in the topic Is product 2*x*5*y an even integer? prinits 12 29 May 2009, 03:53
Is product 2*x*5*y an even integer? a.) 2 + x + 5 + y is an arjtryarjtry 4 02 Aug 2008, 02:17
2 Experts publish their posts in the topic Is product 2*x*5*y an even integer? a. 2 + x + 5 + y is an sondenso 2 23 May 2008, 01:18
Is product 2*x*5*y an even integer? 1. 2 + x + 5 + y is an marcodonzelli 5 02 Mar 2008, 03:22
Display posts from previous: Sort by

Is product 2*x*5*y an even integer?

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.