Find all School-related info fast with the new School-Specific MBA Forum

It is currently 17 Sep 2014, 03:48

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is root ((x-5)^2)=5-x?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
User avatar
Joined: 19 Oct 2004
Posts: 320
Location: Missouri, USA
Followers: 1

Kudos [?]: 7 [0], given: 0

GMAT Tests User
Is root ((x-5)^2)=5-x? [#permalink] New post 10 Nov 2004, 11:52
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions
Is root ((x-5)^2)=5-x?

1)-x|x|>0
2)5-x>0

can we please have some explanation here???
_________________

Let's get it right!!!!

Director
Director
User avatar
Joined: 16 Jun 2004
Posts: 893
Followers: 1

Kudos [?]: 9 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 12:01
Iam unsure if I am reading this right..

Is root ((x-5)^2)=5-x?
=> x-5 = 5-x
or x=5

question is, Is x=5?

1. doesnt say anything much..
2. says x<5. so x is not equal to 5. suff.

B it is. I am unsure if I am looking at it very naively..
Director
Director
User avatar
Joined: 07 Nov 2004
Posts: 697
Followers: 4

Kudos [?]: 15 [0], given: 0

GMAT Tests User
Re: DS " a real terror" [#permalink] New post 10 Nov 2004, 12:31
ruhi160184 wrote:
Is root ((x-5)^2)=5-x?

1)-x|x|>0


Ruhi, I don't understand statement 1. How can a -ve multiplied by a poitive be greater than zero? :?
Senior Manager
Senior Manager
User avatar
Joined: 19 Oct 2004
Posts: 320
Location: Missouri, USA
Followers: 1

Kudos [?]: 7 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 12:38
YEs thats the way the statement is... even i cant understand the head or tail of this one.... :cry:
_________________

Let's get it right!!!!

Senior Manager
Senior Manager
avatar
Joined: 19 May 2004
Posts: 291
Followers: 1

Kudos [?]: 5 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 12:56
D. Nasty one :twisted:

Question is: Is |x-5| = 5-x ?
Or Is |x-5| = - (x-5) ?

And the answer is: Yes, if (x-5)<0,
So the question is now: is x<5 ?

Statement 1: Sufficient. x is negative so it's surely <5.
Statement 2: x<5.

D.
GMAT Club Legend
GMAT Club Legend
avatar
Joined: 15 Dec 2003
Posts: 4318
Followers: 22

Kudos [?]: 163 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 16:21
yes, D it is. root of a square is equal to the abs value of the term squared. So if you have: Sqrt[(a-b)^2], this is equivalent to la-bl
_________________

Best Regards,

Paul

Director
Director
User avatar
Joined: 31 Aug 2004
Posts: 609
Followers: 3

Kudos [?]: 21 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 16:24
Agree with Dookie and Paul...

This one could have been a gmatclub challenge question...
Director
Director
User avatar
Joined: 07 Nov 2004
Posts: 697
Followers: 4

Kudos [?]: 15 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Nov 2004, 20:02
Paul/ Dookie can you please explain statement 1... :roll:
Intern
Intern
User avatar
Joined: 08 Nov 2004
Posts: 46
Location: Montreal
Followers: 0

Kudos [?]: 5 [0], given: 0

 [#permalink] New post 10 Nov 2004, 21:41
Statement 1:

-x|x|>0

Can be divided into 2 inequalities:

1. If x>0:

-x (x) > 0
-x^2>0 (Impossible except if we consider imaginary #'s)

2. If x<0:

-x (-x) > 0
x^2 > 0 (True)

So, we can conclude that x is -ve
Senior Manager
Senior Manager
avatar
Joined: 19 May 2004
Posts: 291
Followers: 1

Kudos [?]: 5 [0], given: 0

GMAT Tests User
 [#permalink] New post 11 Nov 2004, 00:11
gayathri,
About Statement1:

You know that |x| is positive.
Only thing left to make sure the equation is > 0
is to know that x<0. This way (-x) turns positive.
And finally, if x<0 it is surely <5.
Director
Director
User avatar
Joined: 07 Nov 2004
Posts: 697
Followers: 4

Kudos [?]: 15 [0], given: 0

GMAT Tests User
 [#permalink] New post 11 Nov 2004, 06:45
Thanks Dookie & Complex Vision, got it now. :P
Joined: 31 Dec 1969
Location: United States
Concentration: Marketing, Other
GMAT 1: 710 Q49 V38
GMAT 2: 660 Q V
GPA: 3.64
WE: Accounting (Accounting)
Followers: 0

Kudos [?]: 65 [0], given: 76955

CAT Tests
 [#permalink] New post 11 Nov 2004, 23:44
thanks dookie and complex vision. real nice explanations. OA is infact D.

*happy that the terror is over*
CIO
CIO
User avatar
Joined: 09 Mar 2003
Posts: 466
Followers: 1

Kudos [?]: 26 [0], given: 0

GMAT Tests User
 [#permalink] New post 12 Nov 2004, 08:05
D. let me be very clear about something. This is a terrible problem, but very doable. It comes from the OG, and it's actually one I use in my lessons.

The reason is this. You need to know the GMAT VERY well to do this one right, and quickly. And there's exactly one great gmat trick imbedded here which is a red flag: x-5 and 5-x are in the same problem.

Whenever you see the same numbers twice in a problem, reversed around the minus sign, don't freak out. Just remember, this is only a positive/negative question.

Why? Take a look at this example: 10-7 = 3, 7-10=-3. Do you see it? The answer of these two subtraction problems is the same, but one is negative. That will always be true. So it can be said that |10-7|=|7-10|

That's huge. Knowing this means we can forget any algebra crap we are now freaking out about and approach the problem conceptually.

How can the sqaure root of a number squared be equal to its negative? Well, only if the number itself is negative to begin with. Look at -5. If we square it, it's 25, and then if we square root that, we're down to 5! Bingo. If we started with 5, and then squared it, we'd get 25, and then square root, we're back to the same positive 5. So it must be that the number under the radical is negative and the number on the other side of the equal is positive!

Now we're ready to make the final call. If all that is true, then x-5 must be negative, or, more specifically, x must be less than 5.

THAT'S ALL WE NEED TO FIGURE OUT!

Now, to the statements.

1)-x|x|>0
How can this be true? If the product here is positive, then they ultimately must both be positive. The |x| is definately positive, so the -x must also be. That means x must be negative. If negative, then less than 0, so less than 5. ie, enough info.

2)5-x>0
Could it get any better? If 5-x is positive, then x-5 is negative, and this whole thing works out! ie, enough info.

D

ps - i've talked about this in more detail in some of my other posts, if you're interested...
GMAT Club Legend
GMAT Club Legend
avatar
Joined: 15 Dec 2003
Posts: 4318
Followers: 22

Kudos [?]: 163 [0], given: 0

GMAT Tests User
 [#permalink] New post 12 Nov 2004, 17:11
Thanks for your detailed explanation ian, I learned a lot from your teaching! Keep it up :P .
_________________

Best Regards,

Paul

Senior Manager
Senior Manager
User avatar
Joined: 19 Oct 2004
Posts: 320
Location: Missouri, USA
Followers: 1

Kudos [?]: 7 [0], given: 0

GMAT Tests User
 [#permalink] New post 13 Nov 2004, 09:16
Anonymous wrote:
thanks dookie and complex vision. real nice explanations. OA is infact D.

*happy that the terror is over*


That was me :? forgot to logiin again while posting. Thanks everyone for their explanations. Really got this problem now.
_________________

Let's get it right!!!!

  [#permalink] 13 Nov 2004, 09:16
    Similar topics Author Replies Last post
Similar
Topics:
Roots study 2 27 Jan 2009, 02:50
1 If M = sqrt4 + 3sqrt4 + 4sqrt4 Lacaji 1 21 Dec 2008, 15:32
Roots vr4indian 4 29 Sep 2008, 06:54
Root ggarr 3 31 Aug 2007, 11:51
roots yasmeen 1 04 Jun 2006, 18:05
Display posts from previous: Sort by

Is root ((x-5)^2)=5-x?

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.