Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Sep 2014, 09:47

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is the last digit of integer x^2 - y^2 a zero?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Manager
Manager
avatar
Joined: 13 May 2010
Posts: 114
Followers: 1

Kudos [?]: 16 [1] , given: 7

Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 13 Jun 2010, 09:06
1
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

33% (02:04) correct 67% (00:48) wrong based on 338 sessions
Is the last digit of integer x^2 - y^2 a zero?

(1) x - y is an integer divisible by 30
(2) x + y is an integer divisible by 70

I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?
[Reveal] Spoiler: OA
Intern
Intern
avatar
Joined: 25 May 2010
Posts: 9
Followers: 0

Kudos [?]: 1 [0], given: 0

Re: Gmat club test 24 [#permalink] New post 13 Jun 2010, 10:52
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

1. x - y is an integer divisible by 30
2. x + y is an integer divisible by 70


Oa is
[Reveal] Spoiler:
c


I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?


The question doesn't need to say that x and y are integers...

I don't understand the OA. The question says "integer x^2-y^2", which means it is already given that x^2-y^2 is an integer.

I. x^2-y^2=integer=(x+y)(x-y) Thus, if x-y is an integer divisible by 30, then x^2-y^2=30n*(x+y), which always ends in a zero as long as x+y is an integer. And x+y has to be an integer in order for x^2-y^2 to be an integer.

Same reasoning for II - where am I wrong?
Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29641
Followers: 3488

Kudos [?]: 26212 [7] , given: 2706

Re: Gmat club test 24 [#permalink] New post 13 Jun 2010, 11:22
7
This post received
KUDOS
Expert's post
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

1. x - y is an integer divisible by 30
2. x + y is an integer divisible by 70


Oa is
[Reveal] Spoiler:
c


I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?


Given: x^2-y^2=(x-y)(x+y)=integer. Question is the units digit of this integer zero, which can be translated as is x^2-y^2 divisible by 10.

(1) x-y=30m (where m is an integer) --> if x and y are integers, then x+y=integer and x^2-y^2=30m*(x+y)=30m*integer, which is divisible by 10 BUT if x=30.75 and y=0.75, then x^2-y^2=(x-y)(x+y)=30*31.5=945=integer, which is not divisible by 10. Not sufficient.

(2) x+y=70n (where n is an integer) --> if x and y are integers, then x-y=integer and x^2-y^2=(x-y)*70n=integer*70n, which is divisible by 10 BUT if x=69.75 and y=0.25, then x^2-y^2=(x-y)(x+y)=69,5*70=4865=integer, which is not divisible by 10. Not sufficient.

(1)+(2) x^2-y^2=30m*70n=integer, Which is divisible by 10. Sufficient.

Answer: C.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Current Student
User avatar
Status: Current MBA Student
Joined: 19 Nov 2009
Posts: 129
Concentration: Finance, General Management
GMAT 1: 720 Q49 V40
Followers: 8

Kudos [?]: 64 [0], given: 210

m24 #11 [#permalink] New post 03 Jan 2011, 17:42
I got this question correct, but I would just like to understand the problem in more depth. The explanation in the test review was rather brief. Can someone please elaborate. Thanks!

Is the last digit of integer x^2 - y^2 a zero?

1. x - yis an integer divisible by 30

2. x + y is an integer divisible by 70
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29641
Followers: 3488

Kudos [?]: 26212 [1] , given: 2706

Re: m24 #11 [#permalink] New post 04 Jan 2011, 01:21
1
This post received
KUDOS
Expert's post
Intern
Intern
avatar
Joined: 24 Jul 2011
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Is the last digit of integer x^2 - y^2 a zero? 1. x - y is [#permalink] New post 22 Nov 2011, 14:18
Hello Bunuel,

Thanks very much for your explanation to this question, which by the way I came across while working through your excellent "700+ GMAT Data Sufficiency Questions With Explanations" document (wow -- they're tough!)

I had a quick question on this particular question. Firstly, I believe it is the case that x^n - y^n is always divisible by (x-y), and is divisible by (x+y) when the powers of x and y are even.

If I have not mis-stated, then would you mind pointing out the flaw in the following reasoning?
(1) "x-y is an integer divisible by 30" >> adding in the rule that "if a is a factor of b and b is a factor of c, then a is a factor of c", then: x^n - y^n is an integer divisible by (x-y), and (x-y) is an integer divisible by 30, then does it not follow that x^n - y^n is also an integer divisible by 30? and this is sufficient to say that x^n - y^n must end in zero.
(2) similar logic applies since the power of x and y are indeed even and therefore divisible by (x+y).

Would be very grateful if you could take 2 mins to point out the error in that alternative method.

Thanks very much for your contributions and for taking the time to help.
Senior Manager
Senior Manager
avatar
Joined: 12 Oct 2011
Posts: 276
Followers: 0

Kudos [?]: 21 [0], given: 110

Re: Is the last digit of integer x^2 - y^2 a zero? 1. x - y is [#permalink] New post 04 Jan 2012, 07:27
I am not sure if this is the best approach to handle such problems but the following is the way I dealt with this problem.

Question: Is the last digit of (x + y)(x - y) zero?

Statement 1: x - y is an integer divisible by 30
Thus, the least possible value for (x - y) is 30. However, this does not tell us anything about (x + y). If (x + y) = 0.1, then the last digit of the product (x + y)(x - y) is not 0. Thus INSUFFICIENT.

Statement 2: x + y is an integer divisible by 70
Thus, the least possible value for (x + y) is 70. However, this does not tell us anything about (x - y). Using a similar logic as above, if (x - y) = 0.1, then the last digit of their product (x + y)(x - y) is not 0. Thus INSUFFICIENT.

Combining the two statements, we have the least possible value of (x + y) as 70 and the least possible value of (x -y) as 30. Thus, the least possible value of their product will always be divisible by 10 and thus their product will always have zero as the last digit. SUFFICIENT.

Answer: C
_________________

Consider KUDOS if you feel the effort's worth it

Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 111
Location: United States
Followers: 3

Kudos [?]: 34 [0], given: 6

GMAT Tests User
Re: Is the last digit of integer x^2 - y^2 a zero? 1. x - y is [#permalink] New post 04 Jan 2012, 13:21
Very nice problem. No info on x, y so they could be frac, int

Rephrase: (x+y)(x-y) = ..htu, is u = 0?

1. x-y = 30, so x+y could be (53.3+23.3) = 76.6. Therefore, (x+y)(x-y) will clearly not have u = 0. On the other hand, (53+23) = 76. This will have u = 0. Insufficient.
2. x+y = 70. Same deal as 1.

Together, both x+y and x-y are explicitly mentioned. Sufficient - C.
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

Intern
Intern
avatar
Joined: 27 Nov 2011
Posts: 7
Location: India
Concentration: Technology, Marketing
GMAT 1: 660 Q47 V34
GMAT 2: 710 Q47 V41
WE: Consulting (Consulting)
Followers: 0

Kudos [?]: 11 [0], given: 4

Re: Gmat club test 24 [#permalink] New post 28 May 2012, 00:23
Bunuel wrote:
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

1. x - y is an integer divisible by 30
2. x + y is an integer divisible by 70


Oa is
[Reveal] Spoiler:
c


I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?


Given: x^2-y^2=(x-y)(x+y)=integer. Question is the units digit of this integer zero, which can be translated as is x^2-y^2 divisible by 10.

(1) x-y=30m (where m is an integer) --> if x and y are integers, then x+y=integer and x^2-y^2=30m*(x+y)=30m*integer, which is divisible by 10 BUT if x=30.75 and y=0.75, then x^2-y^2=(x-y)(x+y)=30*31.5=945=integer, which is not divisible by 10. Not sufficient.

(2) x+y=70n (where n is an integer) --> if x and y are integers, then x-y=integer and x^2-y^2=(x-y)*70n=integer*70n, which is divisible by 10 BUT if x=69.75 and y=0.25, then x^2-y^2=(x-y)(x+y)=69,5*70=4865=integer, which is not divisible by 10. Not sufficient.

(1)+(2) x^2-y^2=30m*70n=integer, Which is divisible by 10. Sufficient.

Answer: C.

Hope it's clear.


Quote:
Hello Bunuel,

Thanks very much for your explanation to this question, which by the way I came across while working through your excellent "700+ GMAT Data Sufficiency Questions With Explanations" document (wow -- they're tough!)

I had a quick question on this particular question. Firstly, I believe it is the case that x^n - y^n is always divisible by (x-y), and is divisible by (x+y) when the powers of x and y are even.

If I have not mis-stated, then would you mind pointing out the flaw in the following reasoning?
(1) "x-y is an integer divisible by 30" >> adding in the rule that "if a is a factor of b and b is a factor of c, then a is a factor of c", then: x^n - y^n is an integer divisible by (x-y), and (x-y) is an integer divisible by 30, then does it not follow that x^n - y^n is also an integer divisible by 30? and this is sufficient to say that x^n - y^n must end in zero.
(2) similar logic applies since the power of x and y are indeed even and therefore divisible by (x+y).

Would be very grateful if you could take 2 mins to point out the error in that alternative method.

Thanks very much for your contributions and for taking the time to help.


Hi Bunuel,

I also have the same doubt. Please suggest how is this approach incorrect.

Thanks
Current Student
User avatar
Joined: 08 Jan 2009
Posts: 334
GMAT 1: 770 Q50 V46
Followers: 22

Kudos [?]: 81 [0], given: 7

GMAT Tests User
Re: Gmat club test 24 [#permalink] New post 28 May 2012, 02:46
kunalbh19 wrote:
If I have not mis-stated, then would you mind pointing out the flaw in the following reasoning?
(1) "x-y is an integer divisible by 30" >> adding in the rule that "if a is a factor of b and b is a factor of c, then a is a factor of c", then: x^n - y^n is an integer divisible by (x-y), and (x-y) is an integer divisible by 30, then does it not follow that x^n - y^n is also an integer divisible by 30? and this is sufficient to say that x^n - y^n must end in zero.
(2) similar logic applies since the power of x and y are indeed even and therefore divisible by (x+y).

Would be very grateful if you could take 2 mins to point out the error in that alternative method.

Thanks very much for your contributions and for taking the time to help.


So your logic is:

x-y is an integer divisible by 30
a = 30, b = x-y, c = (x-y)(x+y)
a is a factor of b, b is a factor of c, therefore a is a factor of c

But you have made an assumption here that (x+y) is an integer (i.e. that c / a = (x+y) = integer), which is not necessarily true.
_________________

My Debrief

Intern
Intern
avatar
Joined: 27 Nov 2011
Posts: 7
Location: India
Concentration: Technology, Marketing
GMAT 1: 660 Q47 V34
GMAT 2: 710 Q47 V41
WE: Consulting (Consulting)
Followers: 0

Kudos [?]: 11 [0], given: 4

Re: Is the last digit of integer x^2 - y^2 a zero? 1. x - y is [#permalink] New post 28 May 2012, 04:00
Ohhh.. ok.. i think i got it now.. thanks :-D
Intern
Intern
avatar
Joined: 28 Sep 2011
Posts: 35
Location: India
WE: Consulting (Computer Software)
Followers: 1

Kudos [?]: 15 [0], given: 18

Re: Is the last digit of integer x^2 - y^2 a zero? 1. x - y is [#permalink] New post 31 May 2012, 20:00
A tricky question.... Overlooked x+y or x-y could be in Decimals....
Must not skip this
_________________

Kudos if you like the post!!!

Manager
Manager
User avatar
Affiliations: Project Management Professional (PMP)
Joined: 30 Jun 2011
Posts: 213
Location: New Delhi, India
Followers: 2

Kudos [?]: 27 [0], given: 12

GMAT Tests User
Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 01 Jun 2012, 01:01
Amazing question... Thanks

Posted from my mobile device Image
_________________

Best
Vaibhav

If you found my contribution helpful, please click the +1 Kudos button on the left, Thanks

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2400
Followers: 196

Kudos [?]: 38 [0], given: 0

Premium Member
Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 21 Sep 2013, 13:13
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
Joined: 29 Sep 2013
Posts: 48
Followers: 0

Kudos [?]: 13 [0], given: 40

CAT Tests
Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 19 Oct 2013, 01:03
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

(1) x - y is an integer divisible by 30
(2) x + y is an integer divisible by 70



This is how I approached the question:

Statement 1:
x - y =30
x = y + 30

Now, If any we take square any value of X andY + 30the last digit of their difference will be O.

Let Y = -2 => then X = 28 and (28)^2 - (-2)^2 = 784 - 4 = 780
Let Y = -1 => then X = 29 and (29)^2 - (1)^2 = 841 - 1 = 840
Let Y = 0 => then X = 30 and (30)^2 - (0)^2 = 900 - 0 = 900 0
Let Y = 1 => then X = 31 and (31)^2 - (1)^2 = 961 - 1 = 960
Let Y = 2 => then X = 32 and (32)^2 - (2)^2 = 1024 - 4 = 1020
Let Y = 3 => then X = 33 and (33)^2 - (3)^2 = 1089 - 9 = 1080
Let Y = 4 => then X = 34 and (34)^2 - (4)^2 = 1156 - 16 = 1140
....
Let Y = 25 => then X = 55 and (55)^2 - (25)^2 = 3025 - 625 = 2400
....
Let Y = 107 => then X = 137 and (137)^2 - (107)^2 = 18769 - 11449 = 7320

Therefore, Sufficient!

Statement 2
X + Y = 70
Y = 70 - X
Let X = -2 => then Y = 72 and (-2)^2 - (72)^2 = 4 - 5184 = - 5180
Let X = -0 => then Y = 70 and (0)^2 - (70)^2 = 0 - 4900 = - 4900
Let X = -1 => then Y = 69 and (-2)^2 - (72)^2 = 4 - 5184 = - 5180

Sufficient

Therefore, option D

Now can anyone kindly point out the problem in this execution?
Expert Post
2 KUDOS received
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 627
Followers: 41

Kudos [?]: 577 [2] , given: 135

Premium Member
Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 19 Oct 2013, 02:19
2
This post received
KUDOS
Expert's post
suk1234 wrote:

Statement 1:
x - y =30
x = y + 30

Now can anyone kindly point out the problem in this execution?


Firstly, if it is said that (x-y) is divisible by 30, it doesn't mean x-y = 30. It just means (x-y) is a multiple of 30.

Again, you have taken only integral values for x,y. The fact that x,y can be non-integral values also makes your solution incorrect.

Please refer to the post above by Bunuel to get the correct solution.

Hope this helps.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Intern
Intern
avatar
Joined: 13 Aug 2012
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 1

CAT Tests
Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 08 Dec 2013, 22:44
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

(1) x - y is an integer divisible by 30
(2) x + y is an integer divisible by 70

I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?


-- Well.. i see there is a rule which says...
"RULE: for x^n-y^n:
is ALWAYS divisible by (x-y) .
is divisible by (x+y) when n is even. "

Now, in this case...
1) x^2 - y^2 is divisible by (x-y), which in turn is divisible by 30. so if the property holds true, x^2 - y^2 should be divisible by 30, or in 10*3. Which would imply it would end with a 0.
2) Again, going by the above rule, x^2 - y^2 should be divisible by 70. which would imply it is divisible by 10. and thus ends with 0.

I am probably misinterpreting the property :( , or have got it wrong. Could someone please explain?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29641
Followers: 3488

Kudos [?]: 26212 [0], given: 2706

Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 08 Dec 2013, 23:24
Expert's post
gmarchanda wrote:
gmatcracker2010 wrote:
Is the last digit of integer x^2 - y^2 a zero?

(1) x - y is an integer divisible by 30
(2) x + y is an integer divisible by 70

I would like to know, if the Q would have been that x and y are integers, then each statement would be sufficient to ans the Q.

Can somebody please explain why?


-- Well.. i see there is a rule which says...
"RULE: for x^n-y^n:
is ALWAYS divisible by (x-y) .
is divisible by (x+y) when n is even. "

Now, in this case...
1) x^2 - y^2 is divisible by (x-y), which in turn is divisible by 30. so if the property holds true, x^2 - y^2 should be divisible by 30, or in 10*3. Which would imply it would end with a 0.
2) Again, going by the above rule, x^2 - y^2 should be divisible by 70. which would imply it is divisible by 10. and thus ends with 0.

I am probably misinterpreting the property :( , or have got it wrong. Could someone please explain?


The property holds true if x and y are integers but we are not given that.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 19 Nov 2012
Posts: 8
Concentration: Finance, Technology
GMAT Date: 11-02-2014
Followers: 0

Kudos [?]: 5 [0], given: 16

Re: Is the last digit of integer x^2 - y^2 a zero? [#permalink] New post 10 Dec 2013, 10:16
since the first statement says that x-y is an integer divisible by 30 it means x-y can be any multiple of 30
so (x+y)*(x-y)=end with 0
we can pluggin some numbers and see
lets assume (x+y) as any integer for e.g= 2
so 2*30 = ends with 0.
now lets take a non integer 1/5*30 = 6 so doesnot end with 0
since it is a yes for one example and no for other the first statement is insufficient.

second statement says that (x+y) is divisible by 70
so (x+y)*(x-y)=end with 0
we can pluggin some numbers and see
lets assume (x-y) as any integer for e.g= 2
so 70*2 = ends with 0.
now lets take a non integer 140*1/5 = 28 so doesnot end with 0
since it is a yes for one example and no for other the second statement is insufficient.

both statements individually do not satisfy the condition.
when we combine them it is sufficient hence the answer is C
Re: Is the last digit of integer x^2 - y^2 a zero?   [#permalink] 10 Dec 2013, 10:16
    Similar topics Author Replies Last post
Similar
Topics:
If x and y are positive integers and x^2 + y^2 = 100 metallicafan 3 18 Aug 2012, 14:22
38 Experts publish their posts in the topic If x and y are integer, what is the remainder when x^2 + y^2 kt750 23 26 Apr 2012, 19:58
Is x^2 * y^2 an integer divisible by 9? 1) x is an integer MooseDrool 7 09 Aug 2007, 16:22
is the last digit of x^2-y^2 a 0? 1) x-y is an integer FN 12 30 Sep 2005, 16:42
if x is an integer, is x even? 1) x^2-y^2=0 2) x^2+y^2=18 MA 5 26 Feb 2005, 22:41
Display posts from previous: Sort by

Is the last digit of integer x^2 - y^2 a zero?

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.