Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Is the number of seconds required to travel d1 feet at r1 [#permalink]
06 Dec 2012, 06:46

2

This post received KUDOS

7

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

35% (medium)

Question Stats:

58% (02:21) correct
42% (01:13) wrong based on 330 sessions

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

(1) d1 is 30 greater than d2 (2) r1 is 30 greater than r2.

Re: Is the number of seconds required to travel d1 feet at r1 [#permalink]
06 Dec 2012, 06:50

1

This post received KUDOS

Expert's post

3

This post was BOOKMARKED

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

We need to find whether \frac{d_1}{r_1}>\frac{d_2}{r_2}.

(1) d1 is 30 greater than d2 --> d_1=d_2+30. Nothing about the rates. Not sufficient. (2) r1 is 30 greater than r2 --> r_1=r_2+30. Nothing about the distances. Not sufficient.

(1)+(2) The question becomes whether \frac{d_2+30}{r_2+30}>\frac{d_2}{r_2}. Now, if d_2=r_2, then \frac{d_2+30}{r_2+30}=\frac{d_2}{r_2}, thus in this case the answer would be NO but if d_2=1 and r_2=2, then in this case \frac{d_2+30}{r_2+30}=\frac{31}{32}>\frac{1}{2}=\frac{d_2}{r_2}, thus in this case the answer would be YES. Not sufficient.

Re: Is the number of seconds required to travel d1 feet at r1 [#permalink]
18 Dec 2012, 05:35

1

This post received KUDOS

Walkabout wrote:

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

(1) d1 is 30 greater than d2 (2) r1 is 30 greater than r2.

Hi,

St1 and st 2 alone are not sufficient so combining we get

IS

(d2+30)/(r2+30) > d2/r2

The asnwer to this Question will depend upon the ratio of d2/r2.

If d2/r2 is <1, then on adding the same + ve qty to Num & Den will increase the ratio value if d2/r2 is > 1 ,then on adding the same qty will decrease the ratio

Hence ans E _________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”

Distance and Speed - Question 90 from OG13 [#permalink]
31 Jan 2013, 09:20

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second? (1) d1 is 30 greater than d2. (2) r1 is 30 greater than r2.

Now, when I solved this question, I was surprised to see that the solution was (E), i.e, none of the statements provide sufficient information.

I recall, however, that when you add the same number to both the numerator and denominator of a fraction, the resulting fraction is always closer to 1. Using that logic, statements (1) and (2) TOGETHER provide sufficient information. Am I approaching this wrong here?

Okay, figured it out. The information regarding which number is bigger (the speed or the distance) is not provided. Which means that the new fraction (r2 and d2) could actually be approaching 1 from either 0 or from infinity. Clever.

Re: Distance and Speed - Question 90 from OG13 [#permalink]
31 Jan 2013, 09:44

2

This post received KUDOS

Expert's post

Hi Absar,

As with all DS: translating the given information is critical

So the real question is: D1/R1 > D2/R2?

(1) D1 = D2 + 30 You can substitute one of the variables. BUT R1 and R2 could be anything so you could answer yes by making R1 very tiny number and R2 a huge number or you could do the opposite and the answer would be no. Insufficient.

(2) R2 = R2 + 30 The same logic as a above for this statement

(1) + (2) If you put the statements together the question becomes: D2+30/R2+30 > D2/R2

You should test very big values and very small values to see what happens. If R2 is a very tiny value and D2 is a massive value then the left side will be smaller than the right side because R2 will be increased by a much greater factor than will D2.

D2 = 1000 --------> 1030/31 > 1000/1 NO R2 = 1

And vice-versa, if DS is a tiny value and R2 is a massive value than the left side will be greater because D2 will have a greater percentage increase than R2.

D2 = 1 ---------> 31/1030 > 1/1000 YES R2 = 1000

So, you are able to say Yes and No to the original question so there the answer is E

Let me know if you have any questions on this!

HG. _________________

"It is a curious property of research activity that after the problem has been solved the solution seems obvious. This is true not only for those who have not previously been acquainted with the problem, but also for those who have worked over it for years." -Dr. Edwin Land

Re: Distance and Speed - Question 90 from OG13 [#permalink]
31 Jan 2013, 13:25

Expert's post

AbsarShah wrote:

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second? (1) d1 is 30 greater than d2. (2) r1 is 30 greater than r2.

Now, when I solved this question, I was surprised to see that the solution was (E), i.e, none of the statements provide sufficient information.

I recall, however, that when you add the same number to both the numerator and denominator of a fraction, the resulting fraction is always closer to 1. Using that logic, statements (1) and (2) TOGETHER provide sufficient information. Am I approaching this wrong here?

Okay, figured it out. The information regarding which number is bigger (the speed or the distance) is not provided. Which means that the new fraction (r2 and d2) could actually be approaching 1 from either 0 or from infinity. Clever.

Merging similar topics. Please refer to the solutions above and ask if anything remains unclear. _________________

Is the number of seconds required to travel d1 feet at r1 feet p [#permalink]
15 May 2013, 22:41

kapilnegi wrote:

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

(1) d1 is 30 greater than d2.

(2) r1 is 30 greater than r2.

questions is t1 > t2? or (d1/r1) > (d2 / r2)? => (d2 + 30)/(r2 + 30) > (d2/r2)? => [[(d2+30)-(r2+30)]/(r2 + 30)] > (d2-r2)/r2 -- subtract 1 on both sides => [(d2-r2)/(r2+30)]>(d2-r2)/r2 => 1/(r2+30) > 1/(r2) => (r2+30) < r2 => 30 < 0 ? This questions IMO is not answerable but justified in OG . Any thoughts? Am I wrong?

Re: Is the number of seconds required to travel d1 feet at r1 [#permalink]
16 May 2013, 00:29

3

This post received KUDOS

kapilnegi wrote:

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

(1) d1 is 30 greater than d2.

(2) r1 is 30 greater than r2.

This problem depends on the following concept.

If a,b are two positive numbers. and k is any positive number

a. if a/b is greater than 1 then a+k/b+k is less than a/b b. if a/b is less than 1 then a+k/b+k is greater than a/b

Now consider the Above question

we have d1/r1 and d2/r2.

but d1 = d2 + 30 r1 = r2 + 30

so we have d2+30/r2 + 30 and d2/r2

but we don't know whether d2 is greater than r2. So together these statements are not sufficient _________________

"Kudos" will help me a lot!!!!!!Please donate some!!!

Completed Official Quant Review OG - Quant

In Progress Official Verbal Review OG 13th ed MGMAT IR AWA Structure

Yet to do 100 700+ SC questions MR Verbal MR Quant

Re: Is the number of seconds required to travel d1 feet at r1 fe [#permalink]
16 May 2013, 03:49

Expert's post

kiranck007 wrote:

kapilnegi wrote:

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

(1) d1 is 30 greater than d2.

(2) r1 is 30 greater than r2.

questions is t1 > t2? or (d1/r1) > (d2 / r2)? => (d2 + 30)/(r2 + 30) > (d2/r2)? => [[(d2+30)-(r2+30)]/(r2 + 30)] > (d2-r2)/r2 -- subtract 1 on both sides => [(d2-r2)/(r2+30)]>(d2-r2)/r2 => 1/(r2+30) > 1/(r2) => (r2+30) < r2 => 30 < 0 ? This questions IMO is not answerable but justified in OG . Any thoughts? Am I wrong?

Re: Is the number of seconds required to travel d1 feet at r1 [#permalink]
30 Jul 2013, 14:50

Is the number of seconds required to travel d1 feet at r1 feet per second greater than the number of seconds required to travel d2 feet at r2 feet per second?

Time = distance/rate

t1>t2?

(1) d1 is 30 greater than d2

We know nothing about the rate for r1 and r2. INSUFFICIENT

(2) r1 is 30 greater than r2.

We know nothing about the distance of 1 an 2. Even if r1 is greater, the distance for 2 may be proportionally less so that even at a slower speed, d2 is covered in less time than d1. INSUFFICIENT

1+2)

Hypothetical A:

1: Distance = 31 feet and rate = 31 feet/second 2: Distance = 1 feet and rate = 1 foot/second

In this case the time it takes for both is the same.

Hypothetical B:

1: Distance = 330 feet and rate = 60 feet/second Time = Distance / Rate Time = 330 / 60 Time = 11/3 seconds

2: Distance = 300 feet and rate = 30 feet/second Time = Distance/Rate Time = 300 / 30 Time = 10 seconds

It's possible that the time to cover d1 is the same as d2. It also may be greater. INSUFFICIENT

Re: Is the number of seconds required to travel d1 feet at r1 [#permalink]
01 Aug 2014, 08:58

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________