Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 18 May 2013, 20:51

# Is the positive integer n a multiple of 24? (1) n is a

Author Message
TAGS:
Director
Status: GMAT Learner
Joined: 14 Jul 2010
Posts: 672
Followers: 21

Kudos [?]: 108 [0], given: 31

Is the positive integer n a multiple of 24? (1) n is a [#permalink]  23 Feb 2011, 00:35
00:00

Question Stats:

66% (01:30) correct 33% (00:21) wrong based on 1 sessions
Is the positive integer n a multiple of 24?
(1) n is a multiple of 4.
(2) n is a multiple of 6.
_________________

I am student of everyone-baten
Collections:-
PSof OG solved by GC members: http://gmatclub.com/forum/collection-ps-with-solution-from-gmatclub-110005.html
DS of OG solved by GC members: http://gmatclub.com/forum/collection-ds-with-solution-from-gmatclub-110004.html
100 GMAT PREP Quantitative collection http://gmatclub.com/forum/gmat-prep-problem-collections-114358.html
Collections of work/rate problems with solutions http://gmatclub.com/forum/collections-of-work-rate-problem-with-solutions-118919.html
Mixture problems in a file with best solutions: http://gmatclub.com/forum/mixture-problems-with-best-and-easy-solutions-all-together-124644.html

Math Forum Moderator
Joined: 20 Dec 2010
Posts: 2100
Followers: 108

Kudos [?]: 654 [0], given: 376

Re: 115. Multiple [#permalink]  23 Feb 2011, 00:40
Prime factors of 24: 2^3*3
(1) 4: 2^2; Not sufficient.
(2) 6: 2*3; Not sufficient.

Combining both; minimum factors of n= 2^2*2*3 = 2^3*3 = all factors of 24. Sufficient.

Ans: "C"
_________________
Manager
Joined: 24 Nov 2010
Posts: 216
Location: United States (CA)
Concentration: Technology, Entrepreneurship
Schools: Ross '15, Duke '15
Followers: 2

Kudos [?]: 28 [0], given: 7

Re: 115. Multiple [#permalink]  23 Feb 2011, 01:02
i'd say E..

12 is a multiple of both 4 and 6 but not of 24.
Math Forum Moderator
Joined: 20 Dec 2010
Posts: 2100
Followers: 108

Kudos [?]: 654 [0], given: 376

Re: 115. Multiple [#permalink]  23 Feb 2011, 01:19
dreambeliever wrote:
i'd say E..

12 is a multiple of both 4 and 6 but not of 24.

Yes, you are right. I ignored the fact that the 2 in the prime factor of 6 may be the same 2 from the prime factor of 2's in the factors of 12. Thus, n definitely has only two 2's and one 3 as factor, which is 12. thanks.
_________________
Director
Status: GMAT Learner
Joined: 14 Jul 2010
Posts: 672
Followers: 21

Kudos [?]: 108 [0], given: 31

Re: 115. Multiple [#permalink]  23 Feb 2011, 04:51
fluke wrote:
dreambeliever wrote:
i'd say E..

12 is a multiple of both 4 and 6 but not of 24.

Yes, you are right. I ignored the fact that the 2 in the prime factor of 6 may be the same 2 from the prime factor of 2's in the factors of 12. Thus, n definitely has only two 2's and one 3 as factor, which is 12. thanks.

Prime factors of 24: 2^3*3
(1) 4: 2^2; Not sufficient.
(2) 6: 2*3; Not sufficient.

Combining both; minimum factors of n= 2^2*2*3 = 2^3*3 = all factors of 24. Sufficient.

_________________

I am student of everyone-baten
Collections:-
PSof OG solved by GC members: http://gmatclub.com/forum/collection-ps-with-solution-from-gmatclub-110005.html
DS of OG solved by GC members: http://gmatclub.com/forum/collection-ds-with-solution-from-gmatclub-110004.html
100 GMAT PREP Quantitative collection http://gmatclub.com/forum/gmat-prep-problem-collections-114358.html
Collections of work/rate problems with solutions http://gmatclub.com/forum/collections-of-work-rate-problem-with-solutions-118919.html
Mixture problems in a file with best solutions: http://gmatclub.com/forum/mixture-problems-with-best-and-easy-solutions-all-together-124644.html

Math Forum Moderator
Joined: 20 Dec 2010
Posts: 2100
Followers: 108

Kudos [?]: 654 [0], given: 376

Re: 115. Multiple [#permalink]  23 Feb 2011, 05:49
Baten80 wrote:
fluke wrote:
dreambeliever wrote:
i'd say E..

12 is a multiple of both 4 and 6 but not of 24.

Yes, you are right. I ignored the fact that the 2 in the prime factor of 6 may be the same 2 from the prime factor of 2's in the factors of 12. Thus, n definitely has only two 2's and one 3 as factor, which is 12. thanks.

Prime factors of 24: 2^3*3
(1) 4: 2^2; Not sufficient.
(2) 6: 2*3; Not sufficient.

Combining both; minimum factors of n= 2^2*2*3 = 2^3*3 = all factors of 24. Sufficient.

First of all; my answer was wrong; the actual answer is "E"

We need to prove that n is definitely a multiple of 24.
What could be the possible multiples for 24; 24,48,72,96,.....

Prime factors of 24: (2^3*3)
Prime factors of 48: 2*(2^3*3)
Prime factors of 72: 3*(2^3*3)
Prime factors of 96: 4*(2^3*3)

So; we see that if n has at least (2^3*3) as factors; it must be a multiple of 24.

1) n is a multiple of 4.
4 = 2*2 = 2^2. 2^2 contains only two 2's and no 3's. But, we need three 2's and one 3; at least. Thus not sufficient.

2) n is a multiple of 6.
6 = 2*3 = It contains only one 2 and one 3. But, we need three 2's and one 3; at least. Thus not sufficient.

Combining both;
We can't say, as I foolishly did, that n contains all factors "2*2*2*3". It would be wrong. Because the 2 that you see in the second statement may be the same 2 that appeared in statement 1.

e.g.
12: 2*2*3. As you can see.
12 is a factor of 6: 2*3
12 is a factor of 4: 2*2

As you can see the 2 in red color is used by both 6 and 4.

If the two factors were 6,16:
16: 2^4
6: 2*3
It would be sufficient. Just take the maximum power of the each prime factor available for both numbers and check whether the final result is equal or a greater multiple of 24. LCM.

The idea is to find the LCM: if LCM(6,4) >= 24 and LCM(6,4) is a multiple of 24; then n must be a multiple of 24.
_________________
Senior Manager
Joined: 29 Jan 2011
Posts: 401
Followers: 0

Kudos [?]: 8 [0], given: 87

Re: 115. Multiple [#permalink]  19 Nov 2011, 00:38
Baten80 wrote:
fluke wrote:
dreambeliever wrote:
i'd say E..

12 is a multiple of both 4 and 6 but not of 24.

Yes, you are right. I ignored the fact that the 2 in the prime factor of 6 may be the same 2 from the prime factor of 2's in the factors of 12. Thus, n definitely has only two 2's and one 3 as factor, which is 12. thanks.

Prime factors of 24: 2^3*3
(1) 4: 2^2; Not sufficient.
(2) 6: 2*3; Not sufficient.

Combining both; minimum factors of n= 2^2*2*3 = 2^3*3 = all factors of 24. Sufficient.

If in the same question we were to replace 'multiple' by 'divisible' what the difference??? What exactly happens when something is a multiple of something or when something is a divisbile of something ?
GMAT Club team member
Joined: 02 Sep 2009
Posts: 11506
Followers: 1791

Kudos [?]: 9526 [0], given: 826

Re: 115. Multiple [#permalink]  04 Feb 2012, 14:50
siddhans wrote:
If in the same question we were to replace 'multiple' by 'divisible' what the difference??? What exactly happens when something is a multiple of something or when something is a divisbile of something ?

There is no difference between saying that 12 is a multiple of 4 and that 12 is divisible by 4.

As for the question.
Is the positive integer n a multiple of 24?

(1) n is a multiple of 4. Not sufficient.
(2) n is a multiple of 6. Not sufficient.

(1)+(2) n is a multiple of both 4 and 6 which means that it's a multiple of least common multiple of 4 and 6, which is 12. So, even taken together statements are not sufficient, since n can be for example 12 as well as 24. Not sufficient.

Generally if a positive integer n is a multiple of positive integer a and positive integer b, then n is a multiple of LCM(a,b).

Hope it helps.
_________________
Re: 115. Multiple   [#permalink] 04 Feb 2012, 14:50
Similar topics Replies Last post
Similar
Topics:
Is the positive integer n divisable by 24? (1) n is multiple 4 02 May 2006, 15:48
is the positive integer n a multiple of 24? 6 22 May 2007, 10:06
Is the positive integer n a multiple of 24? 1) n is a 2 07 Jun 2007, 19:50
is the positiv integer n a multiple of 24 1. n is a multiple 2 30 Nov 2010, 10:56
Is the positive integer n multiple of 24? 1) n is multiple 6 28 Feb 2011, 12:29
Display posts from previous: Sort by