Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Is triangle ABC isosceles? [#permalink]
09 Dec 2010, 06:52

3

This post received KUDOS

Expert's post

2

This post was BOOKMARKED

anilnandyala wrote:

is the triangle iscoceles

1 x not equal to y 2 ab/bc = 2

Attachment:

untitled_168.jpg [ 3.91 KiB | Viewed 2658 times ]

Is triangle ABC isosceles?

(1) X does not equal Y --> angles at the side BC are not equal --> \(AB\neq{AC}\), but the third side, BC, can be equal to either of them. Not sufficient.

(2) AB/BC=2 --> AB=2BC --> \(AB\neq{BC}\), but AB can be equal to AC. Not sufficient.

(1)+(2) As \(AB\neq{AC}\) and \(AB\neq{BC}\) then the only way triangle ABC to be an isosceles is AC to be equal to BC, but in this case AB=2BC=2AC=BC+AC --> but the length of any side of a triangle must be smaller than the sum of the other two sides, so AB must be less than BC+AC, hence the case when AC=BC is not possible: triangle ABC is not isosceles. Sufficient.

Re: Is triangle ABC isosceles? [#permalink]
10 Dec 2013, 13:17

Is triangle ABC isosceles?

(1) X does not equal Y --> angles at the side BC are not equal --> , but the third side, BC, can be equal to either of them. Not sufficient.

Tells us nothing. X ≠ Y but the third angle could equal x or y in which case the triangle would be isosceles or the third angle would = w in which case the triangle would not be isosceles. Insufficient.

(2) AB/BC=2

The length of AB is twice the length of BC but we don't know anything about side AC. Insufficient.

1+2) The only way for this triangle to be isosceles is if a.) AC = BC or b.) AB = AC. Neither of these outcomes are possible. If AC = AB then a triangle wouldn't be possible. In any triangle, the sum of two legs must be greater than the third. If AC = BC then the formula for the triangle would be 2BC = BC + BC which isn't possible. We also know that AC ≠ AB because the angles opposite them, x and y respectively, do not equal one another. Thus, AC cannot = AB and AC is a different length than AB. This triangle CANNOT be isosceles. SUFFICIENT.

Re: Is triangle ABC isosceles? [#permalink]
23 Jun 2015, 20:53

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Is triangle ABC isosceles? [#permalink]
25 Jun 2015, 03:21

Bunuel Statement 2 says AB=2BC. Lets say BC=x then, AB=2x. Thus, the third side has to be less than x and greater than 3x. So the triangle can't be isosceles. Please clarify...

Re: Is triangle ABC isosceles? [#permalink]
25 Jun 2015, 03:58

Expert's post

NehaBhargava wrote:

Bunuel Statement 2 says AB=2BC. Lets say BC=x then, AB=2x. Thus, the third side has to be less than x and greater than 3x. So the triangle can't be isosceles. Please clarify...

Why not? The third side can have the length of 2x. For example, you can have an isosceles triangle with sides 1, 2, and 2. _________________

Re: Is triangle ABC isosceles? [#permalink]
25 Jun 2015, 04:04

1

This post received KUDOS

Expert's post

NehaBhargava wrote:

Bunuel Statement 2 says AB=2BC. Lets say BC=x then, AB=2x. Thus, the third side has to be less than x and greater than 3x. So the triangle can't be isosceles. Please clarify...

The length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides.

Thus, if the length of two sides are x and 2x, then:

Re: Is triangle ABC isosceles? [#permalink]
25 Jun 2015, 04:25

NehaBhargava wrote:

Bunuel Statement 2 says AB=2BC. Lets say BC=x then, AB=2x. Thus, the third side has to be less than x and greater than 3x. So the triangle can't be isosceles. Please clarify...

Hi NehaBhargava

If BC = x and AB = 2x, the third side has to be LESS than 3x (the sum of two sides is greater than the 3rd side in a triangle) The third side can still be equal to 2x, so this statement is not sufficient.

Hope this clears your doubt.

gmatclubot

Re: Is triangle ABC isosceles?
[#permalink]
25 Jun 2015, 04:25

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

I’ll start off with a quote from another blog post I’ve written : “not all great communicators are great leaders, but all great leaders are great communicators.” Being...