Find all School-related info fast with the new School-Specific MBA Forum

It is currently 19 Dec 2014, 06:16

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is x > 1?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 16 Jun 2013
Posts: 7
Schools: Mays '17
Followers: 0

Kudos [?]: 3 [0], given: 2

CAT Tests
Re: Is x>1? (1) (x+1)(|x|-1) > 0 (2) |x|<5 [#permalink] New post 11 Jun 2014, 18:39
1
This post was
BOOKMARKED
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.


ST1: When x > 0 we have: (x+1)(x-1) > 0 then x^2 - 1 > 0 --> x^2 > 1 ==> x < -1 or x > 1, because x > 0 then x > 1
When x < 0 we have: -(x+1)(x+1) > 0 ~ - (x+1)^2 > 0 not existed.
SUFFICIENT.
ST2: -5 < x < 5. INSUFFICIENT.
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 5031
Location: Pune, India
Followers: 1208

Kudos [?]: 5811 [1] , given: 168

Re: Is x>1? (1) (x+1)(|x|-1) > 0 (2) |x|<5 [#permalink] New post 11 Jun 2014, 23:44
1
This post received
KUDOS
Expert's post
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.


Question: Is x > 1?

(1) (x+1)(|x|-1) > 0
For the left hand side to be positive, either both factors are positive or both are negative.

If both are positive,
x+1 > 0, x > -1
AND
|x|-1 > 0, |x|> 1 which means either x < -1 or x > 1
This is possible only when x > 1

If both are negative,
x+1 < 0, x < -1
AND
|x|-1 < 0, |x| < 1 which means -1 < x < 1
Both these conditions cannot be met and hence this is not possible.

This gives us only one solution: x > 1
So we can answer the question asked with "Yes".

(2) |x|<5
This implies that -5 < x < 5
x may be less than or more than 1. Not sufficient.

Answer (A)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 20 Dec 2013
Posts: 121
Followers: 1

Kudos [?]: 47 [0], given: 1

Re: Is x > 1? [#permalink] New post 12 Jun 2014, 02:10
enigma123 wrote:
Is x > 1?

(1) (x+1) (|x| - 1) > 0

(2) |x| < 5


You have to remember Z O N E D (Zero, One, Negative, Extremes, Decimals)

Statement I is sufficient:

We cannot plug in zero and 1 as the expression (x+1) (|x| - 1) will not hold true. All numbers greater than 1 will hold true for the expression. All decimals and negative numbers will make the expression negative.

Hence the value of x will always be greater than 1.

Statement II is insufficient:

x = 4 (YES) and x = -2 (NO)

Hence the answer is A
_________________

Perfect Scores

If you think our post was valuable then please encourage us with Kudos :)

To learn GMAT for free visit:

http://Perfect-Scores.com
http://Youtube.com/PerfectScores
http://Facebook.com/PerfectScores

Intern
Intern
avatar
Joined: 17 Oct 2013
Posts: 46
Location: India
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 680 Q47 V37
GMAT 2: 730 Q49 V40
GPA: 3.5
WE: Business Development (Computer Software)
Followers: 0

Kudos [?]: 14 [0], given: 544

Re: Is x>1 [#permalink] New post 13 Jun 2014, 09:55
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If x>0 then |x|=x so (x+1) (|x| - 1) > 0 becomes (x+1) (x - 1) > 0 --> x^2-1>0 --> x^2>1 --> x<-1 or x>1. Since we consider range when x>0 then we have x>1 for this case;

If x\leq{0} then |x|=-x so (x+1) (|x| - 1) > 0 becomes (x+1) (-x - 1) > 0 --> -(x+1) (x+1) > 0 --> -(x+1)^2>0 --> (x+1)^2<0. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that (x+1) (|x| - 1) > 0 holds true only when x>1. Sufficient.


(2) |x| < 5 --> -5<x<5. Not sufficient.

Answer: A.

Hope it's clear.


Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!
Thank you in advance!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24589
Followers: 3803

Kudos [?]: 32823 [0], given: 3559

Re: Is x>1 [#permalink] New post 13 Jun 2014, 10:03
Expert's post
Kconfused wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If x>0 then |x|=x so (x+1) (|x| - 1) > 0 becomes (x+1) (x - 1) > 0 --> x^2-1>0 --> x^2>1 --> x<-1 or x>1. Since we consider range when x>0 then we have x>1 for this case;

If x\leq{0} then |x|=-x so (x+1) (|x| - 1) > 0 becomes (x+1) (-x - 1) > 0 --> -(x+1) (x+1) > 0 --> -(x+1)^2>0 --> (x+1)^2<0. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that (x+1) (|x| - 1) > 0 holds true only when x>1. Sufficient.


(2) |x| < 5 --> -5<x<5. Not sufficient.

Answer: A.

Hope it's clear.


Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!
Thank you in advance!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)


You can include 0 in either of the ranges:

When x\leq{0} then |x|=-x, or more generally when some \ expression\leq{0} then |some \ expression|={-(some \ expression)}. For example: |-5|=5=-(-5).

When x\geq{0} then |x|=x, or more generally when some \ expression\geq{0} then |some \ expression|={some \ expression}. For example: |5|=5.

The point is that |0|=0, so it doesn't matter in which range you include it.

P.S. BTW your question was already answered in this very thread: is-x-134652.html#p1261810
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
User avatar
Joined: 04 Jul 2014
Posts: 112
Concentration: General Management, Strategy
GMAT 1: 640 Q47 V31
GPA: 3.94
WE: Analyst (Accounting)
Followers: 4

Kudos [?]: 41 [0], given: 259

CAT Tests
Re: Is x > 1? [#permalink] New post 22 Nov 2014, 06:24
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?
_________________

Cheers!!

Joseph
If you like my post, let me know. Give me a kudos! :) Check these out too. You might like them! :)
Comprehensive Verbal Flash cards/Notes | How to prepare your recommenders best | How to boost/ace SC score sustainbly |

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24589
Followers: 3803

Kudos [?]: 32823 [1] , given: 3559

Re: Is x > 1? [#permalink] New post 22 Nov 2014, 06:30
1
This post received
KUDOS
Expert's post
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
User avatar
Joined: 04 Jul 2014
Posts: 112
Concentration: General Management, Strategy
GMAT 1: 640 Q47 V31
GPA: 3.94
WE: Analyst (Accounting)
Followers: 4

Kudos [?]: 41 [0], given: 259

CAT Tests
Re: Is x > 1? [#permalink] New post 22 Nov 2014, 06:43
Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.


Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. :-D
_________________

Cheers!!

Joseph
If you like my post, let me know. Give me a kudos! :) Check these out too. You might like them! :)
Comprehensive Verbal Flash cards/Notes | How to prepare your recommenders best | How to boost/ace SC score sustainbly |

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24589
Followers: 3803

Kudos [?]: 32823 [0], given: 3559

Is x > 1? [#permalink] New post 22 Nov 2014, 06:58
Expert's post
joseph0alexander wrote:
Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.


Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. :-D


Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x > 0 --> (x+1)(x - 1) < 0.

(x + 1) < 0 and (x - 1) < 0 --> x < -1 and x < 1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
User avatar
Joined: 04 Jul 2014
Posts: 112
Concentration: General Management, Strategy
GMAT 1: 640 Q47 V31
GPA: 3.94
WE: Analyst (Accounting)
Followers: 4

Kudos [?]: 41 [0], given: 259

CAT Tests
Re: Is x > 1? [#permalink] New post 22 Nov 2014, 08:21
Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.


Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. :shock:

Please help! :)
_________________

Cheers!!

Joseph
If you like my post, let me know. Give me a kudos! :) Check these out too. You might like them! :)
Comprehensive Verbal Flash cards/Notes | How to prepare your recommenders best | How to boost/ace SC score sustainbly |

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24589
Followers: 3803

Kudos [?]: 32823 [0], given: 3559

Re: Is x > 1? [#permalink] New post 22 Nov 2014, 08:28
Expert's post
joseph0alexander wrote:
Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.


Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. :shock:

Please help! :)


I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
User avatar
Joined: 04 Jul 2014
Posts: 112
Concentration: General Management, Strategy
GMAT 1: 640 Q47 V31
GPA: 3.94
WE: Analyst (Accounting)
Followers: 4

Kudos [?]: 41 [0], given: 259

CAT Tests
Re: Is x > 1? [#permalink] New post 22 Nov 2014, 09:07
Bunuel wrote:
I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.


Thanks Bunuel. Understand it now much better. :)

Reading your post along with this one is-x-134652-20.html#p1373275 from VeritasPrepKarishma helped. :)
_________________

Cheers!!

Joseph
If you like my post, let me know. Give me a kudos! :) Check these out too. You might like them! :)
Comprehensive Verbal Flash cards/Notes | How to prepare your recommenders best | How to boost/ace SC score sustainbly |

Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 7
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: Is x > 1? [#permalink] New post 27 Nov 2014, 04:05
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If x>0 then |x|=x so (x+1) (|x| - 1) > 0 becomes (x+1) (x - 1) > 0 --> x^2-1>0 --> x^2>1 --> x<-1 or x>1. Since we consider range when x>0 then we have x>1 for this case;

If x\leq{0} then |x|=-x so (x+1) (|x| - 1) > 0 becomes (x+1) (-x - 1) > 0 --> -(x+1) (x+1) > 0 --> -(x+1)^2>0 --> (x+1)^2<0. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that (x+1) (|x| - 1) > 0 holds true only when x>1. Sufficient.


(2) |x| < 5 --> -5<x<5. Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24589
Followers: 3803

Kudos [?]: 32823 [0], given: 3559

Re: Is x > 1? [#permalink] New post 27 Nov 2014, 05:30
Expert's post
sinhap07 wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If x>0 then |x|=x so (x+1) (|x| - 1) > 0 becomes (x+1) (x - 1) > 0 --> x^2-1>0 --> x^2>1 --> x<-1 or x>1. Since we consider range when x>0 then we have x>1 for this case;

If x\leq{0} then |x|=-x so (x+1) (|x| - 1) > 0 becomes (x+1) (-x - 1) > 0 --> -(x+1) (x+1) > 0 --> -(x+1)^2>0 --> (x+1)^2<0. Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that (x+1) (|x| - 1) > 0 holds true only when x>1. Sufficient.


(2) |x| < 5 --> -5<x<5. Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.


-(x+1)^2>0;

Add (x+1)^2 to both sides: 0>(x+1)^2, which is the same as (x+1)^2<0.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

1 KUDOS received
Intern
Intern
avatar
Joined: 07 Dec 2009
Posts: 29
GMAT Date: 12-03-2014
Followers: 0

Kudos [?]: 4 [1] , given: 201

GMAT ToolKit User Premium Member
Re: Is x > 1? [#permalink] New post 06 Dec 2014, 13:52
1
This post received
KUDOS
Is x > 1?

I would approach it the following way :

(1) (x+1) (|x| - 1) > 0

(+) * (+) > 0 or (-) * (-) > 0

For both of the parts to be positive we can see that x >1 . Just by trying few values you can figure this out. X cant be Zero as then the second part becomes - . X cant be 1 as then second part becomes 0 and hence the whole LHS becomes Zero.

For both of the parts to be negative we try any value less an Zero and see that no value will satisfy the equation. Hence X cannot be negative.. Hence A is Sufficient.

(2) |x| < 5

Clearly not sufficient

Answer is A.
Re: Is x > 1?   [#permalink] 06 Dec 2014, 13:52
    Similar topics Author Replies Last post
Similar
Topics:
x>1? DelSingh 0 11 Aug 2013, 09:45
8 Experts publish their posts in the topic Is 1 > |x-1| ? ankagl63 9 24 Jun 2013, 23:18
1 Experts publish their posts in the topic If x2>1? KTMHammer 2 12 Feb 2012, 11:00
2 Experts publish their posts in the topic Is 1 > |x - 1| ? Hussain15 5 14 Jul 2010, 05:36
2 Experts publish their posts in the topic Is x > 1? gmattokyo 15 01 Nov 2009, 02:56
Display posts from previous: Sort by

Is x > 1?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 35 posts ] 



cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.