Find all School-related info fast with the new School-Specific MBA Forum

It is currently 30 May 2016, 19:59
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is x > 1?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 16 Jun 2013
Posts: 9
Schools: Mays '17
Followers: 0

Kudos [?]: 3 [0], given: 3

Re: Is x>1? (1) (x+1)(|x|-1) > 0 (2) |x|<5 [#permalink]

Show Tags

New post 11 Jun 2014, 19:39
1
This post was
BOOKMARKED
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.


ST1: When x > 0 we have: (x+1)(x-1) > 0 then x^2 - 1 > 0 --> x^2 > 1 ==> x < -1 or x > 1, because x > 0 then x > 1
When x < 0 we have: -(x+1)(x+1) > 0 ~ - (x+1)^2 > 0 not existed.
SUFFICIENT.
ST2: -5 < x < 5. INSUFFICIENT.
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 6584
Location: Pune, India
Followers: 1795

Kudos [?]: 10813 [1] , given: 212

Re: Is x>1? (1) (x+1)(|x|-1) > 0 (2) |x|<5 [#permalink]

Show Tags

New post 12 Jun 2014, 00:44
1
This post received
KUDOS
Expert's post
sevaro wrote:
Is x>1?

(1) (x+1)(|x|-1) > 0
(2) |x|<5

I got it right plugging in number. Any other options?

Thanks

This question is rated as hard by GMAC.


Question: Is x > 1?

(1) \((x+1)(|x|-1) > 0\)
For the left hand side to be positive, either both factors are positive or both are negative.

If both are positive,
x+1 > 0, x > -1
AND
|x|-1 > 0, |x|> 1 which means either x < -1 or x > 1
This is possible only when x > 1

If both are negative,
x+1 < 0, x < -1
AND
|x|-1 < 0, |x| < 1 which means -1 < x < 1
Both these conditions cannot be met and hence this is not possible.

This gives us only one solution: x > 1
So we can answer the question asked with "Yes".

(2) \(|x|<5\)
This implies that -5 < x < 5
x may be less than or more than 1. Not sufficient.

Answer (A)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 20 Dec 2013
Posts: 125
Followers: 7

Kudos [?]: 81 [0], given: 1

Re: Is x > 1? [#permalink]

Show Tags

New post 12 Jun 2014, 03:10
enigma123 wrote:
Is x > 1?

(1) (x+1) (|x| - 1) > 0

(2) |x| < 5


You have to remember Z O N E D (Zero, One, Negative, Extremes, Decimals)

Statement I is sufficient:

We cannot plug in zero and 1 as the expression (x+1) (|x| - 1) will not hold true. All numbers greater than 1 will hold true for the expression. All decimals and negative numbers will make the expression negative.

Hence the value of x will always be greater than 1.

Statement II is insufficient:

x = 4 (YES) and x = -2 (NO)

Hence the answer is A
Intern
Intern
avatar
Joined: 17 Oct 2013
Posts: 49
Location: India
Concentration: Strategy, Statistics
Schools: ISB '17 (A)
GMAT 1: 730 Q49 V40
WE: Analyst (Computer Software)
Followers: 0

Kudos [?]: 29 [0], given: 549

Re: Is x>1 [#permalink]

Show Tags

New post 13 Jun 2014, 10:55
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If \(x>0\) then \(|x|=x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (x - 1) > 0\) --> \(x^2-1>0\) --> \(x^2>1\) --> \(x<-1\) or \(x>1\). Since we consider range when \(x>0\) then we have \(x>1\) for this case;

If \(x\leq{0}\) then \(|x|=-x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (-x - 1) > 0\) --> \(-(x+1) (x+1) > 0\) --> \(-(x+1)^2>0\) --> \((x+1)^2<0\). Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that \((x+1) (|x| - 1) > 0\) holds true only when \(x>1\). Sufficient.


(2) |x| < 5 --> \(-5<x<5\). Not sufficient.

Answer: A.

Hope it's clear.


Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!
Thank you in advance!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33089
Followers: 5778

Kudos [?]: 70925 [0], given: 9857

Re: Is x>1 [#permalink]

Show Tags

New post 13 Jun 2014, 11:03
Expert's post
Kconfused wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If \(x>0\) then \(|x|=x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (x - 1) > 0\) --> \(x^2-1>0\) --> \(x^2>1\) --> \(x<-1\) or \(x>1\). Since we consider range when \(x>0\) then we have \(x>1\) for this case;

If \(x\leq{0}\) then \(|x|=-x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (-x - 1) > 0\) --> \(-(x+1) (x+1) > 0\) --> \(-(x+1)^2>0\) --> \((x+1)^2<0\). Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that \((x+1) (|x| - 1) > 0\) holds true only when \(x>1\). Sufficient.


(2) |x| < 5 --> \(-5<x<5\). Not sufficient.

Answer: A.

Hope it's clear.


Thanks Bunnel.
I have a question regarding the modulus of X.
|X| = -X when X<= 0
|X| = X when X> 0
Which range does zero belong to? Since we know the result in the end solely depends on whether the absolute value of x (whether it is positive or negative) and zero is rather inconsequential in deciding whether |X| is to become -X or +X.
So, is
|X| = -X when X< 0
|X| = X when X >= 0 wrong? (if you observe I have swapped the equal to zero sign from the negative to the positive case)

So where exactly does zero fall in a modulus scenario? It is important because it decides whether the values on the verge of the range are considered in the solution set or not.
Hope the description of my question is clear enough!
Thank you in advance!

My guess is that we will need to plug in the values on the edges of the range and then decide where the zero falls (or rather which values are to be considered)


You can include 0 in either of the ranges:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\).

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

The point is that |0|=0, so it doesn't matter in which range you include it.

P.S. BTW your question was already answered in this very thread: is-x-134652.html#p1261810
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Tuck Thread Master
User avatar
Joined: 04 Jul 2014
Posts: 284
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Followers: 17

Kudos [?]: 181 [0], given: 403

CAT Tests
Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 07:24
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?
_________________

Cheers!!

JA
If you like my post, let me know. Give me a kudos! :)

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33089
Followers: 5778

Kudos [?]: 70925 [1] , given: 9857

Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 07:30
1
This post received
KUDOS
Expert's post
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0
2) x-1 > 0
3) -x-1 > 0

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Tuck Thread Master
User avatar
Joined: 04 Jul 2014
Posts: 284
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Followers: 17

Kudos [?]: 181 [0], given: 403

CAT Tests
Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 07:43
Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.


Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. :-D
_________________

Cheers!!

JA
If you like my post, let me know. Give me a kudos! :)

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33089
Followers: 5778

Kudos [?]: 70925 [0], given: 9857

Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 07:58
Expert's post
joseph0alexander wrote:
Bunuel wrote:
joseph0alexander wrote:
Bunuel,

Can we try this question by evaluating each of these expressions separately? Is this a correct approach, though time consuming?

1) x+1 > 0 ---> x > -1
2) x-1 > 0 ---> x > 1
3) -x-1 > 0 ---> -x > 1 or x > -1

If correct, could you please demonstrate on how to proceed?


This would not the best approach. You should consider two cases for |x|: when x<0, then |x| = x and when x>0, then |x| = -x. As well as two cases when (x+1) and (|x| - 1) are both positive and both negative.


Fair enough Bunuel, but just for the sake of understanding and learning the concept.

If we proceed with the 3 equations, I am getting the results in red above. Comparing them, we can take the greatest limiting factor, which is x>1, and prove sufficiency. I find this approach a little easier. Is my arithmetic correct?

Thank you. :-D


Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x > 0 --> (x+1)(x - 1) < 0.

(x + 1) < 0 and (x - 1) < 0 --> x < -1 and x < 1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Tuck Thread Master
User avatar
Joined: 04 Jul 2014
Posts: 284
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Followers: 17

Kudos [?]: 181 [0], given: 403

CAT Tests
Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 09:21
Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.


Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. :shock:

Please help! :)
_________________

Cheers!!

JA
If you like my post, let me know. Give me a kudos! :)

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33089
Followers: 5778

Kudos [?]: 70925 [0], given: 9857

Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 09:28
Expert's post
joseph0alexander wrote:
Bunuel wrote:
Again you should consider 2*2 = 4 cases.

(x+1)(|x| - 1) > 0.

1. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) > 0 and (-x - 1) > 0 --> x > -1 and x < -1. No solution here.

2. x < 0 --> (x+1)(-x - 1) > 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

3. x > 0 --> (x+1)(x - 1) > 0.

(x + 1) > 0 and (x - 1) > 0 --> x > -1 and x > 1. This gives x > 1.

4. x < 0 --> (x+1)(-x - 1) < 0.

(x + 1) < 0 and (-x - 1) < 0 --> x < -1 and x > -1. No solution here.

So, (x+1)(|x| - 1) > 0 holds true only when x > 1.

Hope it's clear.


Hi Bunuel,

Kindly pardon me. I am unable to understand your explanation. Could you please explain how you arrived at the 4 equations? I think the 4 cases have come up because x could be either positive or negative. Is it so?

Further you've mentioned that we've to consider 2x2 cases. I understand that you have taken 3 cases where x < 0 and 1 case where x > 0. I'm totally lost now. :shock:

Please help! :)


I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Tuck Thread Master
User avatar
Joined: 04 Jul 2014
Posts: 284
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Followers: 17

Kudos [?]: 181 [0], given: 403

CAT Tests
Re: Is x > 1? [#permalink]

Show Tags

New post 22 Nov 2014, 10:07
Bunuel wrote:
I had typos there. Edited now. Anyway the point is that we consider two cases for |x| and then two cases for the multiples both negative and both positive.


Thanks Bunuel. Understand it now much better. :)

Reading your post along with this one is-x-134652-20.html#p1373275 from VeritasPrepKarishma helped. :)
_________________

Cheers!!

JA
If you like my post, let me know. Give me a kudos! :)

Manager
Manager
avatar
Joined: 27 Aug 2014
Posts: 58
Followers: 0

Kudos [?]: 1 [0], given: 3

Re: Is x > 1? [#permalink]

Show Tags

New post 27 Nov 2014, 05:05
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If \(x>0\) then \(|x|=x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (x - 1) > 0\) --> \(x^2-1>0\) --> \(x^2>1\) --> \(x<-1\) or \(x>1\). Since we consider range when \(x>0\) then we have \(x>1\) for this case;

If \(x\leq{0}\) then \(|x|=-x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (-x - 1) > 0\) --> \(-(x+1) (x+1) > 0\) --> \(-(x+1)^2>0\) --> \((x+1)^2<0\). Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that \((x+1) (|x| - 1) > 0\) holds true only when \(x>1\). Sufficient.


(2) |x| < 5 --> \(-5<x<5\). Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33089
Followers: 5778

Kudos [?]: 70925 [0], given: 9857

Re: Is x > 1? [#permalink]

Show Tags

New post 27 Nov 2014, 06:30
Expert's post
sinhap07 wrote:
Bunuel wrote:
Good question. +1.

Is x> 1?

(1) (x+1) (|x| - 1) > 0. Consider two cases:

If \(x>0\) then \(|x|=x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (x - 1) > 0\) --> \(x^2-1>0\) --> \(x^2>1\) --> \(x<-1\) or \(x>1\). Since we consider range when \(x>0\) then we have \(x>1\) for this case;

If \(x\leq{0}\) then \(|x|=-x\) so \((x+1) (|x| - 1) > 0\) becomes \((x+1) (-x - 1) > 0\) --> \(-(x+1) (x+1) > 0\) --> \(-(x+1)^2>0\) --> \((x+1)^2<0\). Now, since the square of a number cannot be negative then for this range given equation has no solution.

So, we have that \((x+1) (|x| - 1) > 0\) holds true only when \(x>1\). Sufficient.


(2) |x| < 5 --> \(-5<x<5\). Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunuel

Why are we not changing the inequality sign in statement 1 when we assume x is negative-ideally we should. In that case, we get x<-1 from -(x+1)^2<0 as one of (x+1) can be eliminated.


\(-(x+1)^2>0\);

Add (x+1)^2 to both sides: \(0>(x+1)^2\), which is the same as \((x+1)^2<0\).
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Manager
Manager
avatar
Joined: 07 Dec 2009
Posts: 110
GMAT Date: 12-03-2014
Followers: 0

Kudos [?]: 21 [1] , given: 367

GMAT ToolKit User Premium Member CAT Tests
Re: Is x > 1? [#permalink]

Show Tags

New post 06 Dec 2014, 14:52
1
This post received
KUDOS
Is x > 1?

I would approach it the following way :

(1) (x+1) (|x| - 1) > 0

(+) * (+) > 0 or (-) * (-) > 0

For both of the parts to be positive we can see that x >1 . Just by trying few values you can figure this out. X cant be Zero as then the second part becomes - . X cant be 1 as then second part becomes 0 and hence the whole LHS becomes Zero.

For both of the parts to be negative we try any value less an Zero and see that no value will satisfy the equation. Hence X cannot be negative.. Hence A is Sufficient.

(2) |x| < 5

Clearly not sufficient

Answer is A.
Manager
Manager
User avatar
Joined: 11 Sep 2013
Posts: 153
Concentration: Finance, Finance
Followers: 2

Kudos [?]: 58 [0], given: 156

Re: Is x > 1? [#permalink]

Show Tags

New post 27 Dec 2014, 12:27
Ans A: Better approach for me will be to try with some common numbers quickly. -1.5, 0.5, 0, 0.5 , 1.5
Manager
Manager
User avatar
Status: Trying hard to give another shot!
Joined: 29 Jun 2010
Posts: 114
GMAT 1: 610 Q45 V29
WE: Information Technology (Computer Software)
Followers: 1

Kudos [?]: 39 [0], given: 50

Reviews Badge
Is X>1? [#permalink]

Show Tags

New post 24 Aug 2015, 15:52
Is X > 1 ?

1) (X+1) (|X| -1 ) >0

2) |X| <5


Starting with 2) -5 < X < 5 .hence clearly not sufficient .

However, i am not sure how to go about the 1st one .
_________________

Thanks,
GC24


Please click Kudos ,if my post helped you ;)

Expert Post
1 KUDOS received
Math Forum Moderator
avatar
Joined: 20 Mar 2014
Posts: 2606
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 97

Kudos [?]: 1092 [1] , given: 777

Re: Is x > 1? [#permalink]

Show Tags

New post 24 Aug 2015, 16:02
1
This post received
KUDOS
Expert's post
gmatcracker24 wrote:
Is X > 1 ?

1) (X+1) (|X| -1 ) >0

2) |X| <5


Starting with 2) -5 < X < 5 .hence clearly not sufficient .

However, i am not sure how to go about the 1st one .


Search for a question before posting a new topic. The question would have been discussed already.

As for the question,

Per statement 1, (x+1)(|x|-1) >0

Case 1: for x \(\geq\) 0 ---> |x| = x ----> (x+1)(x-1) > 0 ----> x>1 or x<-1 but as x \(\geq\) 0 ---> only possible case is x>1

Case 2: for x<0 ---> |x|=-x ---> (x+1)(-x-1)>0 ----> \(-(x+1)^2 > 0\) ---> \((x+1)^2<0\) . Now a square can never be <0 and thus x can not be negative.

Thus the only possible case from statement 1 is for x \(\geq\) 0 which gives a definite "yes" for x>1.

Hence A is the correct answer.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Senior Manager
Senior Manager
avatar
Joined: 29 Oct 2013
Posts: 288
Concentration: Finance
Schools: Cornell AMBA'17
GMAT 1: 750 Q V46
GPA: 3.7
WE: Corporate Finance (Retail Banking)
Followers: 13

Kudos [?]: 302 [0], given: 188

GMAT ToolKit User
Re: Is x > 1? [#permalink]

Show Tags

New post 17 Feb 2016, 15:45
Here is my solution attached
Attachments

Capture.PNG
Capture.PNG [ 735.37 KiB | Viewed 128 times ]


_________________

Please consider giving 'kudos' if you like my post and want to thank :)

My journey V46 and 750 -> my-journey-to-46-on-verbal-750overall-171722.html#p1367876

Intern
Intern
avatar
Joined: 05 Jun 2015
Posts: 26
Followers: 0

Kudos [?]: 4 [0], given: 442

Is x > 1? [#permalink]

Show Tags

New post 12 Mar 2016, 00:45
Hi Bunuel,

I have a question.

(x+1)(|x|-1)=0 has x=1 and x=-1 as its solution. However, x=-1 is a repeated root. Hence, on the number line, the sign will not change when it passes x=-1.

--------(-1)---------(1)+++++++

Therefore, only when x>1, (x+1)(|x|-1)>0.

Is my solution correct? I remember my highschool math teacher said something like 'the sign doesn't change when it passes a double root'. But, it's years ago and I just want to make sure that the approach is valid.

Thank you!
Is x > 1?   [#permalink] 12 Mar 2016, 00:45

Go to page   Previous    1   2   3    Next  [ 42 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
Is X>1? gmatcracker24 0 24 Aug 2015, 15:52
5 Experts publish their posts in the topic Is |x+1| > 6? EgmatQuantExpert 7 20 May 2015, 10:36
11 Experts publish their posts in the topic Is 1 > |x-1| ? ankagl63 12 25 Jun 2013, 00:18
2 Experts publish their posts in the topic Is 1 > |x - 1| ? Hussain15 7 14 Jul 2010, 06:36
2 Experts publish their posts in the topic Is x > 1? gmattokyo 15 01 Nov 2009, 03:56
Display posts from previous: Sort by

Is x > 1?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.