Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 Aug 2014, 07:46

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is x^2 + y^2 > 100?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Intern
Intern
avatar
Joined: 24 Jan 2011
Posts: 12
Followers: 0

Kudos [?]: 1 [1] , given: 2

Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 07:07
1
This post received
KUDOS
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

33% (02:29) correct 67% (01:17) wrong based on 369 sessions
Is x^2 + y^2 > 100?

(1) 2xy < 100

(2) (x + y)^2 > 200
[Reveal] Spoiler: OA

Last edited by Bunuel on 29 Oct 2012, 03:38, edited 1 time in total.
OA edited.
Expert Post
13 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22143
Followers: 3409

Kudos [?]: 24927 [13] , given: 2697

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 08:00
13
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
arvindg wrote:
Problem source: Veritas Practice Test

Is x^2 + y^2 > 100?

(1) 2xy < 100

(2) (x + y)^2 > 200


Is x^2 + y^2 > 100?

(1) 2xy < 100 --> clearly insufficient: if x=y=0 then the answer will be NO but if x=10 and y=-10 then the answer will be YES.

(2) (x + y)^2 > 200 --> x^2+2xy+y^2>200. Now, as (x-y)^2\geq{0} (square of any number is more than or equal to zero) then x^2+y^2\geq{2xy} so we can safely substitute 2xy with x^2+y^2 (as x^2+y^2 is at least as big as 2xy then the inequality will still hold true) --> x^2+(x^2+y^2)+y^2>200 --> 2(x^2+y^2)>200 --> x^2+y^2>100. Sufficient.

Answer: B.

Are you sure the OA is C?

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22143
Followers: 3409

Kudos [?]: 24927 [2] , given: 2697

Re: Is x^2 + y^2 > 100? [#permalink] New post 28 Jan 2011, 02:14
2
This post received
KUDOS
Expert's post
tarunjagtap wrote:
Bunuel's explanation is clear to me..
I think what bunuel said could be correct..

bunuel can you please explain why they say 2xy value cannnot be found hence combining both the equation..

kudos to bunuel, for thinking (x-y)^2 >= 0


Well I think that solution provided by Veritas is just wrong.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22143
Followers: 3409

Kudos [?]: 24927 [2] , given: 2697

Re: Is x^2 + y^2 > 100? [#permalink] New post 29 Jan 2011, 17:59
2
This post received
KUDOS
Expert's post
tarunjagtap wrote:
well from (x-y)^2 >=0 to x^2 + y^2 >= 2xy case
there could be a situation.. wen x^2 + y^2 is almost equal to 4xy or 6xy(since greater than 2xy is also applicable) then in that case we can not decide x^2 + y^2 > 100

can we vouch for this case as x^2 + y^2 equal to 4xy.
??? confused.. :?:


Not sure understood what you meant by that but anyway: statement (2) says: x^2+2xy+y^2>200. Next, we know that x^2+y^2\geq{2xy} is true for any values of x and y. So we can manipulate and substitute 2xy with x^2+y^2 in (2) (because x^2+y^2 is at least as large as 2xy): x^2+(x^2+y^2)+y^2>200 --> x^2+y^2>100.

Hope it's clear.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Intern
Intern
avatar
Joined: 19 Jul 2010
Posts: 11
Followers: 0

Kudos [?]: 2 [1] , given: 3

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 07:50
1
This post received
KUDOS
first option 1:

2xy < 100 ------ 1

cant say from option 1.

(x+y)^2 > 200
x^2 + y^2 + 2xy > 200
x^2 + y^2 > 200 - 2xy

substitute 2xy in above equation so x^2 + y^2 > 200 - 2xy
2xy is less than 100 from equation 1.
implies x^2 + y^2 > 100

so using both options.. Ans C
1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 05 Jul 2010
Posts: 359
Followers: 15

Kudos [?]: 41 [1] , given: 17

GMAT ToolKit User GMAT Tests User
Re: Is x^2 + y^2 > 100? [#permalink] New post 07 Sep 2011, 14:13
1
This post received
KUDOS
Bunuel wrote:
arvindg wrote:
Problem source: Veritas Practice Test

Is x^2 + y^2 > 100?

(1) 2xy < 100

(2) (x + y)^2 > 200


Is x^2 + y^2 > 100?

(1) 2xy < 100 --> clearly insufficient: if x=y=0 then the answer will be NO but if x=10 and y=-10 then the answer will be YES.

(2) (x + y)^2 > 200 --> x^2+2xy+y^2>200. Now, as (x-y)^2\geq{0} (square of any number is more than or equal to zero) then x^2+y^2\geq{2xy} so we can safely substitute 2xy with x^2+y^2 (as x^2+y^2 is at least as big as 2xy then the inequality will still hold true) --> x^2+(x^2+y^2)+y^2>200 --> 2(x^2+y^2)>200 --> x^2+y^2>100. Sufficient.

Answer: B.

Are you sure the OA is C?


I am feeling proud about myself :). I got just the ONE question wrong in my Veritas CAT test today, and this was the one. I marked B as I proved it during the test - took 3.42 mins though. I should have got 100% correct otherwise. Good to know Veritas guys were wrong! I was a bit baffled by their explanation.

My proof (lengthy BUT conceptual proof):
(x+y)^2 > 200
=> |x + y| > 10*Sqrt(2)
=> For x^2 + y^2 to MINIMUM x=y : Why? Because squaring a number SPREADS the value exponentially. For given {x,y} such that x+y is known, x^2 + y^2 will ONLY spread MORE as we spread x and y away from their mean which is (x+y)/2 - regardless of the signs of x and y; in-fact opposite signs will spread the sum of squares even further. Hence x,y both MUST be > 5*sqrt(2). Hence MIN(x^2 + y^2) MUST be > 25*2 + 25*2 = 100. Hence, x^2 + y^2 > 100.

If there is any Veritas Instructor here, please let me know if I got it wrong in some freakish way.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22143
Followers: 3409

Kudos [?]: 24927 [1] , given: 2697

Re: Is x^2+y^2>100?? (1) 2xy<100 (2) (x+y)^2 [#permalink] New post 29 Oct 2012, 03:41
1
This post received
KUDOS
Expert's post
rajathpanta wrote:
Is x^2+y^2>100??

(1) 2xy<100
(2) (x+y)^2>200

To me its only B. because statement 2 boils down to x+y>\sqrt{200}

Can someone explain the OA


Merging similar topics. You are right, OA should be B, not C. See here: is-x-2-y-108343.html#p859197

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 24 Jan 2011
Posts: 12
Followers: 0

Kudos [?]: 1 [0], given: 2

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 07:56
Thanks Tarun. I get that (1) alone doesn't work, but how did you rule out (2)?
I chose B by trying different numbers and not finding any numbers such that (2) was true but the stem was not true.
Intern
Intern
avatar
Joined: 24 Jan 2011
Posts: 12
Followers: 0

Kudos [?]: 1 [0], given: 2

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 08:15
Thanks Bunuel!

Yes, the OA was C, I've attached a screen capture. Hope I don't run into something like this on the actual GMAT :)

Attachment:
veritas_30.JPG
veritas_30.JPG [ 41.99 KiB | Viewed 7047 times ]
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22143
Followers: 3409

Kudos [?]: 24927 [0], given: 2697

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 08:28
Expert's post
arvindg wrote:
Thanks Bunuel!

Yes, the OA was C, I've attached a screen capture. Hope I don't run into something like this on the actual GMAT :)

Attachment:
veritas_30.JPG


Yes OA is indeed given as C. So I think Veritas is wrong with this one. By the way what was their reasoning while eliminating the second statement?

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 24 Jan 2011
Posts: 12
Followers: 0

Kudos [?]: 1 [0], given: 2

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 19:28
Here's the explanation!

Attachment:
Veritas_30_expln.jpg
Veritas_30_expln.jpg [ 63.89 KiB | Viewed 7014 times ]
Intern
Intern
avatar
Joined: 19 Jul 2010
Posts: 11
Followers: 0

Kudos [?]: 2 [0], given: 3

Re: Is x^2 + y^2 > 100? [#permalink] New post 27 Jan 2011, 21:44
Bunuel's explanation is clear to me..
I think what bunuel said could be correct..

bunuel can you please explain why they say 2xy value cannnot be found hence combining both the equation..

kudos to bunuel, for thinking (x-y)^2 >= 0
Senior Manager
Senior Manager
User avatar
Joined: 08 Nov 2010
Posts: 422
WE 1: Business Development
Followers: 7

Kudos [?]: 34 [0], given: 161

GMAT ToolKit User GMAT Tests User
Re: Is x^2 + y^2 > 100? [#permalink] New post 29 Jan 2011, 09:42
Damn Bunuel - nice trick. very nice!

_________________

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4851 [0], given: 163

Re: Is x^2 + y^2 > 100? [#permalink] New post 29 Jan 2011, 13:01
Expert's post
Hey arvindg,
Thanks for pointing that out. The explanation is indeed incorrect. Sometimes, errors just creep up unwittingly. We will fix it soon. Your strategy of using numbers was spot on and that's exactly what I was thinking while reading the question too... Though the switch from <100 to >100 takes place at decimals so I was a little unhappy about that. The algebraic solution given by Bunuel is neat.

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 19 Jul 2010
Posts: 11
Followers: 0

Kudos [?]: 2 [0], given: 3

Re: Is x^2 + y^2 > 100? [#permalink] New post 29 Jan 2011, 17:39
well from (x-y)^2 >=0 to x^2 + y^2 >= 2xy case
there could be a situation.. wen x^2 + y^2 is almost equal to 4xy or 6xy(since greater than 2xy is also applicable) then in that case we can not decide x^2 + y^2 > 100

can we vouch for this case as x^2 + y^2 equal to 4xy. ??? confused.. :?:
Director
Director
User avatar
Joined: 21 Dec 2010
Posts: 658
Followers: 10

Kudos [?]: 79 [0], given: 51

GMAT Tests User
Re: Is x^2 + y^2 > 100? [#permalink] New post 30 Jan 2011, 22:09
x*2+y*2 > 100, Bunuel proved it algebraically . the explanation is clear , so the answer should be B, not C , it is so much easier to fall for the trap under time pressure.

_________________

What is of supreme importance in war is to attack the enemy's strategy.

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2047
Followers: 128

Kudos [?]: 902 [0], given: 376

GMAT Tests User
Re: Is x^2 + y^2 > 100? [#permalink] New post 02 Feb 2011, 04:41
Problem source: Veritas Practice Test

I was not able to rule out B as "Not sufficient" at first. After Bunuel's explanation, I tried to solve this with numbers and here's what I got.

Question: Is x^2 + y^2 > 100?

(1)
x=1,y=1,2xy=2<100 but x^2+y^2=1+1=2<100. Answer to Question: NO
x=10,y=1,2xy=20<100 but x^2+y^2=100+1=101>100. Answer to Question: YES
Not sufficient.

(2)
(x+y)^2>200
|x+y|>200
x+y>\sqrt{200}

i.e.
(x+y) > \sqrt{200} or (x+y) < -\sqrt{200} --- Restriction

Now; if we can prove that at least one value of x^2 + y^2 for the given condition is <=100; this statement becomes NOT SUFFICIENT. Let's find the least value for x^2 + y^2 with above restriction;

Considering the above restriction, the least value pair for x and y so that x^2 + y^2 should give us the least value should be greater than the following:

x=\sqrt{200}/2 and y=\sqrt{200}/2
or
x=-\sqrt{200}/2 and y=-\sqrt{200}/2

Solve for x^2 + y^2
(200/4)+(200/4)
50+50=100

But; this result is for x+y=(\sqrt{200}/2)+(\sqrt{200}/2); we want it for x+y>(\sqrt{200}/2)+(\sqrt{200}/2); even a little fluctuation in x or y will push the result beyond 100.

Thus; there is no value pair for x and y that gives us a value for x^2 + y^2 <=100. The second statement is SUFFICIENT.

Ans: B

However, I will remember the takeaway from Bunuel that x^2 + y^2 >= 2xy for solving similar types of questions later.

_________________

~fluke

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Status: Preparing myself to break the sound( 700 )-barrier!
Affiliations: IFC - Business Edge, Bangladesh Enterprise Institute
Joined: 15 Feb 2011
Posts: 209
Location: Dhaka, Bangladesh
Schools: Texas A&M - Mays; PennState - Smeal; Purdue - Krannert; JohnsHopkins - Carey; Vanderbilt - Owen; WakeForest - Babcock; UBC - Sauder
WE 1: Financial Analyst/Financial Management Trainer - BRAC Afghanistan - 13 months
WE 2: Business Proposal Coordinator - MiDS, Inc. (in Kabul, Afghanistan) - 4 Months (did quit the job bcoz of security concerns)
WE 3: Readers For Readers (A Social Impact Generating Organization) - Co-Founder
Followers: 7

Kudos [?]: 30 [0], given: 136

Re: Is x^2 + y^2 > 100? [#permalink] New post 29 Apr 2011, 23:37
I am weak (i think the weakest) in DS.

This problem tempted me today to give a try. I solved this and came up with the answer - Option C.

Here is why.

First I simplified the question stem in this was so that I can find both the statements' issues in the stem.
x^2 + y^2 > 100, or x^2 + y^2 + 2xy > 100 + 2xy, or (x + y)^2 > 100 + 2xy

Statement 1 is not sufficient. So, we eliminate option A and D. Then, statement 2 is insufficient as well. Thus, we can eliminate the option D. Because, both the statements don't give us any specific values and keep another set of unknown/variable in the inequality.

Now, if we consider Statements 1 and 2 together, we can find different values for (x + y)^2 > 100 + 2xy. Hence, C is the answer.

As I said before, I am really weak in DS; my explanation may be so hilarious and incorrect. I will appreciate if anyone could pinpoint where problem lies with my explanation though the answer is correct.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4688
Location: Pune, India
Followers: 1080

Kudos [?]: 4851 [0], given: 163

Re: Is x^2 + y^2 > 100? [#permalink] New post 07 Sep 2011, 20:18
Expert's post
abhicoolmax wrote:
Bunuel wrote:
arvindg wrote:
Problem source: Veritas Practice Test

Is x^2 + y^2 > 100?

(1) 2xy < 100

(2) (x + y)^2 > 200


Is x^2 + y^2 > 100?

(1) 2xy < 100 --> clearly insufficient: if x=y=0 then the answer will be NO but if x=10 and y=-10 then the answer will be YES.

(2) (x + y)^2 > 200 --> x^2+2xy+y^2>200. Now, as (x-y)^2\geq{0} (square of any number is more than or equal to zero) then x^2+y^2\geq{2xy} so we can safely substitute 2xy with x^2+y^2 (as x^2+y^2 is at least as big as 2xy then the inequality will still hold true) --> x^2+(x^2+y^2)+y^2>200 --> 2(x^2+y^2)>200 --> x^2+y^2>100. Sufficient.

Answer: B.

Are you sure the OA is C?


I am feeling proud about myself :). I got just the ONE question wrong in my Veritas CAT test today, and this was the one. I marked B as I proved it during the test - took 3.42 mins though. I should have got 100% correct otherwise. Good to know Veritas guys were wrong! I was a bit baffled by their explanation.

My proof (lengthy BUT conceptual proof):
(x+y)^2 > 200
=> |x + y| > 10*Sqrt(2)
=> For x^2 + y^2 to MINIMUM x=y : Why? Because squaring a number SPREADS the value exponentially. For given {x,y} such that x+y is known, x^2 + y^2 will ONLY spread MORE as we spread x and y away from their mean which is (x+y)/2 - regardless of the signs of x and y; in-fact opposite signs will spread the sum of squares even further. Hence x,y both MUST be > 5*sqrt(2). Hence MIN(x^2 + y^2) MUST be > 25*2 + 25*2 = 100. Hence, x^2 + y^2 > 100.

If there is any Veritas Instructor here, please let me know if I got it wrong in some freakish way.


Your reasoning is fine. That's good thinking. Think of it in another way:
When 2 numbers are equal, their Arithmetic Mean = Geometric Mean
AM is least when it is equal to GM and GM is greatest when it is equal to AM.
So sum of the terms is least when the numbers are equal; product is maximum when they are equal.

For minimum value of x^2 + y^2, we need x^2 = y^2 or |x| = |y|

On the same line, if product is given to be constant, sum is minimum when numbers are equal.
If the sum is given to be constant, the product is maximum when the numbers are equal.

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Senior Manager
Senior Manager
User avatar
Status: Prevent and prepare. Not repent and repair!!
Joined: 13 Feb 2010
Posts: 278
Location: India
Concentration: Technology, General Management
GPA: 3.75
WE: Sales (Telecommunications)
Followers: 9

Kudos [?]: 20 [0], given: 282

Is x^2+y^2>100?? (1) 2xy<100 (2) (x+y)^2 [#permalink] New post 28 Oct 2012, 01:54
Is x^2+y^2>100??

(1) 2xy<100
(2) (x+y)^2>200

To me its only B. because statement 2 boils down to x+y>\sqrt{200}

Can someone explain the OA

_________________

I've failed over and over and over again in my life and that is why I succeed--Michael Jordan
Kudos drives a person to better himself every single time. So Pls give it generously
Wont give up till i hit a 700+

Is x^2+y^2>100?? (1) 2xy<100 (2) (x+y)^2   [#permalink] 28 Oct 2012, 01:54
    Similar topics Author Replies Last post
Similar
Topics:
Is |xy|>x^2y^2 WoundedTiger 0 24 Jul 2014, 21:39
4 Experts publish their posts in the topic Is x^2 + y^2 > 3z pavan2185 3 01 Sep 2013, 10:16
9 Experts publish their posts in the topic Is |xy| > x^2*y^2 ? DelSingh 9 17 Aug 2013, 11:51
7 Experts publish their posts in the topic Is |x^2 + y^2| > |x^2 - y^2|? makhija1 17 04 Jun 2013, 19:45
If x and y are positive integers and x^2 + y^2 = 100 metallicafan 3 18 Aug 2012, 14:22
Display posts from previous: Sort by

Is x^2 + y^2 > 100?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 38 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.