Find all School-related info fast with the new School-Specific MBA Forum

It is currently 14 Feb 2016, 15:17
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is |x| + |x -1| = 1?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Status: Persevering
Joined: 15 May 2013
Posts: 225
Location: India
Concentration: Technology, Leadership
GMAT Date: 08-02-2013
GPA: 3.7
WE: Consulting (Consulting)
Followers: 1

Kudos [?]: 72 [0], given: 34

GMAT ToolKit User
Re: Is |x| + |x -1| = 1? (1) x 0 (2) x 1 [#permalink] New post 18 Aug 2013, 05:15
btg9788 wrote:
Shouldn't it be mandatory that X is an integer? Or that is assumed implicitly?


No you should not assume it to be a integer, if it is not mentioned. The problem here is the range is such that even if you pick a non integer value, you will get the answer as 1.

After combining we have 0<=x<=1

For example if x=0.33

|0.3|+|1-0.3|=.3+.7=1 . Hope it is clear
_________________

--It's one thing to get defeated, but another to accept it.

Manager
Manager
avatar
Joined: 31 Mar 2013
Posts: 68
Location: United States
Followers: 0

Kudos [?]: 22 [0], given: 109

Re: Is |x| + |x -1| = 1? (1) x 0 (2) x 1 [#permalink] New post 29 Sep 2013, 12:20
Bunuel wrote:
samark wrote:
Bunuel,

I am confused here..
"B. 0<=x<=1 --> x-x+1=1 --> 1=1. Which means that for ANY value from the range 0<=x<=1, equation |x| + |x -1| = 1 holds true."

I am confused that how first x is +ive and second one -ve...after we take condition 0<=x<=1?
Pls, explain.

Thanks!


We know that for \(|x|\):
When \(x\leq{0}\), then \(|x|=-x\);
When \(x\geq{0}\), then \(|x|=x\).

We have \(|x| + |x -1| = 1\).

Now for the range: \(0\leq{x}\leq{1}\) --> \(|x|=x\) (as \(x\) in given range is positive) and \(|x-1|=-(x-1)=-x+1\) (as expression \(x-1\) in the given range is negative, to check this try some \(x\) from this range, let \(x=-0.5\) then \(x-1=0.5-1=-0.5=negative\)). So \(|x| + |x -1| = 1\) in this range becomes: \(x-x+1=1\) --> \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(|x| + |x -1| = 1\) holds true.

Hope it's clear.



Bunuel, I have a question on the part in red. Shouldn't it actually be:

We know that for \(|x|\):
When \(x<{0}\), then \(|x|=-x\); (I have changed the "less than or equal to" to only "less than")
When \(x\geq{0}\), then \(|x|=x\).

Because we should consider 2 cases -
a) greater than or equal to zero
AND
b) less than zero. [Not less than or equal to zero]

In the part B of your solution we are also considering the case where \(x=1\), right? If this is the case, how can \(|x-1|\) be \(-x +1\)? At \(x=1\), I am guessing \(|x-1|\) = \(x-1\).
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 31355
Followers: 5367

Kudos [?]: 62619 [0], given: 9457

Re: Is |x| + |x -1| = 1? (1) x 0 (2) x 1 [#permalink] New post 29 Sep 2013, 12:24
Expert's post
emailmkarthik wrote:
Bunuel wrote:
samark wrote:
Bunuel,

I am confused here..
"B. 0<=x<=1 --> x-x+1=1 --> 1=1. Which means that for ANY value from the range 0<=x<=1, equation |x| + |x -1| = 1 holds true."

I am confused that how first x is +ive and second one -ve...after we take condition 0<=x<=1?
Pls, explain.

Thanks!


We know that for \(|x|\):
When \(x\leq{0}\), then \(|x|=-x\);
When \(x\geq{0}\), then \(|x|=x\).

We have \(|x| + |x -1| = 1\).

Now for the range: \(0\leq{x}\leq{1}\) --> \(|x|=x\) (as \(x\) in given range is positive) and \(|x-1|=-(x-1)=-x+1\) (as expression \(x-1\) in the given range is negative, to check this try some \(x\) from this range, let \(x=-0.5\) then \(x-1=0.5-1=-0.5=negative\)). So \(|x| + |x -1| = 1\) in this range becomes: \(x-x+1=1\) --> \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(|x| + |x -1| = 1\) holds true.

Hope it's clear.



Bunuel, I have a question on the part in red. Shouldn't it actually be:

We know that for \(|x|\):
When \(x<{0}\), then \(|x|=-x\); (I have changed the "less than or equal to" to only "less than")
When \(x\geq{0}\), then \(|x|=x\).

Because we should consider 2 cases -
a) greater than or equal to zero
AND
b) less than zero. [Not less than or equal to zero]

In the part B of your solution we are also considering the case where \(x=1\), right? If this is the case, how can \(|x-1|\) be \(-x +1\)? At \(x=1\), I am guessing \(|x-1|\) = \(x-1\).


No, it works with = sign as well: |0|=0=-0.

If x=1, then |x-1|=0 and -x+1=0 too.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 31 Mar 2013
Posts: 68
Location: United States
Followers: 0

Kudos [?]: 22 [0], given: 109

Re: Is |x| + |x -1| = 1? (1) x 0 (2) x 1 [#permalink] New post 29 Sep 2013, 20:21
I didn't know this. Thanks for clarifying, Bunuel!
Manager
Manager
avatar
Joined: 07 May 2013
Posts: 109
Followers: 0

Kudos [?]: 14 [0], given: 1

Re: Is |x| + |x -1| = 1? (1) x 0 (2) x 1 [#permalink] New post 04 Jun 2014, 04:40
wow! That is a lot of discussion. My solution will baffle you all.
Basically he is asking if the sum of the distance between 0 and x & x and 1 equal to one.

<-------><-------->
-----------------0---------x----------1-------------


I.E x must lie between 0 and 1
That condition is only satisfied when we combine the two. Hence answer is C.
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 8245
Followers: 420

Kudos [?]: 111 [0], given: 0

Top 10 in overall
Re: Is |x| + |x -1| = 1? [#permalink] New post 19 Jun 2015, 01:39
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
Joined: 17 Jun 2015
Posts: 5
Location: United States
Followers: 0

Kudos [?]: 0 [0], given: 14

GMAT ToolKit User
Re: Is |x| + |x -1| = 1? [#permalink] New post 03 Jul 2015, 09:37
I would choose the graphical method for this problem.


Statements 1 and 2 are clearly insufficient on their own. However taken together we see that x lies between 1 and 0.
|x| represents distance from Zero and |x-1| represents distance from 1.

now |x|+|x-1| represents total distance between 1 and 0.

This is always 1.

Regards
Sunil Natraj
Manager
Manager
avatar
Joined: 07 Apr 2015
Posts: 187
Followers: 2

Kudos [?]: 42 [0], given: 185

Re: Is |x| + |x -1| = 1? [#permalink] New post 04 Jul 2015, 05:00
cheetarah1980 wrote:
I got C. I plugged in numbers for each statement.
If x=0, then true. If x=1, then true. If x=2, then not true. S1 not sufficient
If x=1, then true. If x=-2, then not true. S2 not sufficient
if x is between 0 and 1 inclusive that means we plug in fractions (plus we already know that it's true for 0 and 1). No matter what fraction x represents 1-x will always give the value needed to add to x to make it = 1. Thus C is sufficient.


Exactly the way I did it, just confused by the huge discussion around this if that is sufficient enough....?!
Intern
Intern
avatar
Joined: 20 Apr 2015
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 26

Re: Is |x| + |x -1| = 1? [#permalink] New post 10 Oct 2015, 20:21
Bunuel wrote:
Economist wrote:
Hi Bunuel,
can you please explain: :)
0<=x<=1 --> x-x+1=1 --> 1=1. Which means that for ANY value from the range 0<=x<=1, equation |x| + |x -1| = 1 holds true.

we cannot derive anything in this interval, does it mean that all values in this interval satisfy the equation ? This is something new for me...do you have any links for this? I thought, since we cannot derive anything, this interval is also out of scope.

Though, I got the answer by some quick number substitutions.


Well knew that this part needs more explanation.

When \(x\) is in the range \(0\leq{x}\leq{1}\), equation \(|x|+|x-1|=1\) will become: \(x-x+1=1\) --> \(1=1\). Which is true, indeed \(1=1\). But what does that mean? This means that when \(x\) is in this range, equation takes the form of \(x-x+1=1\) and value of \(x\) does not affects the equation as it cancels out. OR in other words any \(x\) from this range makes equation to hold true.

You can try some number picking from this range to see that.

Hope it's clear. Please tell me if it needs more clarification.

BTW what answer did you get?



hii Bunuel i am not able to understand how do you decide the check points for such question .
Intern
Intern
avatar
Joined: 06 Oct 2013
Posts: 38
Location: United Kingdom
Concentration: Leadership, International Business
WE: Engineering (Consulting)
Followers: 1

Kudos [?]: 14 [0], given: 33

Re: Is |x| + |x -1| = 1? [#permalink] New post 07 Nov 2015, 03:52
Bunuel wrote:
This one is very tricky!

Is |x| + |x -1| = 1?
(1) x ≥ 0
(2) x ≤ 1

Q is \(|x| + |x -1| = 1\). Let's check when this equation holds true. We should consider three ranges (as there are two check points \(x=0\) and \(x=1\)):

A. \(x<0\) --> \(-x-x+1=1\) --> \(x=0\), but this solution is not valid as we are checking the range \(x<0\);

B. \(0\leq{x}\leq{1}\) -->\(x-x+1=1\) --> \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(|x| + |x -1| = 1\) holds true.

C. \(x>1\) --> \(x+x-1=1\) --> \(x=1\), but this solution is not valid as we are checking the range \(x>1\).

So we get that equation \(|x| + |x -1| = 1\) holds true ONLY in the range \(0\leq{x}\leq{1}\).

Statements:
(1) \(x\geq{0}\). Not sufficient, as \(x\) must be also \(\leq{1}\);
(2) \(x\leq{1}\). Not sufficient, as \(x\) must be also \(\geq{0}\);

(1)+(2) \(0\leq{x}\leq{1}\), exactly the range we needed. Sufficient.

Answer: C.




Bunuel,

please help me.

highlighted part: if \(x<=0--->-x-x+1=1-----> x=0\). then it becomes valid, right ?. then doesn't it change our Answer?

or when we have to consider "equal sign". \(x<=0,0<x<1 ( or ) x<0, 0<=x<1\)
Expert Post
VP
VP
User avatar
Joined: 08 Jul 2010
Posts: 1133
Location: India
GMAT: INSIGHT
WE: Education (Education)
Followers: 36

Kudos [?]: 830 [0], given: 40

Re: Is |x| + |x -1| = 1? [#permalink] New post 07 Nov 2015, 05:36
Expert's post
mendelay wrote:
Is |x| + |x -1| = 1?

(1) x ≥ 0
(2) x ≤ 1


For Such questions the first and most important question is TO THINK, for what vale of x, will |x| + |x -1| = 1 be true

The ranges of values to be checked are
1) between 0 and 1
2) between 0 and -1
3) Greater than 1
4) Less than -1


After a few hit and trial you may comfortably arrive at the range 0 ≤ x ≤ 1 for which the above expression will be correct

Statement 1: x ≥ 0

x may be between 0 and 1 (Answer to the question 'YES') OR
x may be Greater than 1 (Answer to the question 'NO')
NOT SUFFICIENT

Statement 2: x ≤ 1

x may be between 0 and 1 (Answer to the question 'YES') OR
x may be Less than 0 (Answer to the question 'NO')
NOT SUFFICIENT

Combining the two Statements
x ≥ 0 and x ≤ 1
i.e. 0 ≤ x ≤ 1
SUFFICIENT

Answer: option C
_________________

Prosper!!!

GMATinsight

Bhoopendra Singh and Dr.Sushma Jha

e-mail: info@GMATinsight.com
Call us : +91-9999687183 / 9891333772

http://www.GMATinsight.com/testimonials.html


Contact for One-on-One LIVE ONLINE (SKYPE Based) or CLASSROOM Quant/Verbal FREE Demo Class




READ: http://gmatclub.com/forum/620-to-760-getting-reborn-161230.html

Classroom Centre Address:
GMATinsight
107, 1st Floor, Krishna Mall,
Sector-12 (Main market),
Dwarka, New Delhi-110075

______________________________________________________
Please press the Image if you appreciate this post !!

Expert Post
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 684
GPA: 3.82
Followers: 34

Kudos [?]: 260 [0], given: 0

Re: Is |x| + |x -1| = 1? [#permalink] New post 10 Nov 2015, 10:17
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Is |x| + |x -1| = 1?

(1) x ≥ 0
(2) x ≤ 1

If we modify the question, the range becomes 0≤x≤1, and the answer becomes (C), as the range of conditions 1 and 2 is 0≤x≤1

Once we modify the original condition and the question according to the variable approach method 1, we can solve approximately 30% of DS questions.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 20% off coupon code for GMAT Club members.
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Intern
Intern
avatar
Joined: 04 Aug 2015
Posts: 9
Followers: 1

Kudos [?]: 2 [0], given: 1

Re: Is |x| + |x -1| = 1? [#permalink] New post 11 Dec 2015, 19:45
Bunuel wrote:
This one is very tricky!

Is |x| + |x -1| = 1?
(1) x ≥ 0
(2) x ≤ 1

Q is \(|x| + |x -1| = 1\). Let's check when this equation holds true. We should consider three ranges (as there are two check points \(x=0\) and \(x=1\)):

A. \(x<0\) --> \(-x-x+1=1\) --> \(x=0\), but this solution is not valid as we are checking the range \(x<0\);

B. \(0\leq{x}\leq{1}\) -->\(x-x+1=1\) --> \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(|x| + |x -1| = 1\) holds true.

C. \(x>1\) --> \(x+x-1=1\) --> \(x=1\), but this solution is not valid as we are checking the range \(x>1\).

So we get that equation \(|x| + |x -1| = 1\) holds true ONLY in the range \(0\leq{x}\leq{1}\).

Statements:
(1) \(x\geq{0}\). Not sufficient, as \(x\) must be also \(\leq{1}\);
(2) \(x\leq{1}\). Not sufficient, as \(x\) must be also \(\geq{0}\);

(1)+(2) \(0\leq{x}\leq{1}\), exactly the range we needed. Sufficient.

Answer: C.



Hi Bunuel, I have a question in selecting ranges.
Why are you selecting the range as X<0, 0≤X≤1, X>1 and not X<0, 0≤X<1 ,X≥1?
If I choose the second way, solution X = 1 becomes valid in the range X≥1.
1 KUDOS received
Math Forum Moderator
avatar
Joined: 20 Mar 2014
Posts: 2269
GMAT 1: 650 Q49 V30
GMAT 2: 690 Q49 V34
GMAT 3: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 72

Kudos [?]: 871 [1] , given: 637

Re: Is |x| + |x -1| = 1? [#permalink] New post 12 Dec 2015, 06:34
1
This post received
KUDOS
srirampasupathi wrote:



Hi Bunuel, I have a question in selecting ranges.
Why are you selecting the range as X<0, 0≤X≤1, X>1 and not X<0, 0≤X<1 ,X≥1?
If I choose the second way, solution X = 1 becomes valid in the range X≥1.


Let me try to answer your question.

The reason why we are taking \(x<0\) , \(0 \leq x \leq 1\) and \(x>1\) as the ranges to consider is because |x| = |x-0| and as you are given |x-1| and |x|, these expressions change their "nature" at points 0 and 1. So you need to understand what happens to |x| and |x-1| around 0 and 1.

You can take the ranges as x<0, 0≤x<1 ,x≥1, in which case you will get the following 3 cases:

1. x<0 , |x|+|x-1|=1 --> -x-x+1=1 ---> -2x=0 --> x= 0 (not possible as we have assumed that x<0). So x<0 is not a valid option.

2. 0≤x<1, |x|+|x-1|=1 --> x-x+1=1 ---> 1=1 --> this range satisfies the values and hence should be considered.

3. x≥1, |x|+|x-1|=1 --> x+x-1=1 ---> 2x=2 ---> x= 1 --> this range satisfies the values and hence should be considered. As you are getting a particular value here, you need to check for x>1 in particular as you might not get consistent value.

For checking, consider x=5, |5|+|5-1| = 5+4 = 9 \(\neq\) 1. Thus x>1 is NOT a valid range. Hence the range in question becomes \(0 \leq x \leq 1\)

Alternate solution, |x| and |x-1| can be interpreted as distance of 'x' from 0 and 1 respectively. So in effect, the question is asking you what is the range of variable 'x' for which we get sum of its distances from 0 and 1 equal to 1 unit .

When you draw the number line, you see that this sum of distances of x for 0 and 1 will be = 1 ONLY when \(0 \leq x \leq 1\) .

Both statements when combined give this information and hence C is the correct answer.

Hope this helps.
Attachments

2015-12-12_9-29-58.jpg
2015-12-12_9-29-58.jpg [ 6.96 KiB | Viewed 147 times ]


_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Intern
Intern
avatar
Joined: 04 Aug 2015
Posts: 9
Followers: 1

Kudos [?]: 2 [0], given: 1

Re: Is |x| + |x -1| = 1? [#permalink] New post 12 Dec 2015, 07:41
Engr2012 wrote:
srirampasupathi wrote:



Hi Bunuel, I have a question in selecting ranges.
Why are you selecting the range as X<0, 0≤X≤1, X>1 and not X<0, 0≤X<1 ,X≥1?
If I choose the second way, solution X = 1 becomes valid in the range X≥1.


Let me try to answer your question.

The reason why we are taking \(x<0\) , \(0 \leq x \leq 1\) and \(x>1\) as the ranges to consider is because |x| = |x-0| and as you are given |x-1| and |x|, these expressions change their "nature" at points 0 and 1. So you need to understand what happens to |x| and |x-1| around 0 and 1.

You can take the ranges as x<0, 0≤x<1 ,x≥1, in which case you will get the following 3 cases:

1. x<0 , |x|+|x-1|=1 --> -x-x+1=1 ---> -2x=0 --> x= 0 (not possible as we have assumed that x<0). So x<0 is not a valid option.

2. 0≤x<1, |x|+|x-1|=1 --> x-x+1=1 ---> 1=1 --> this range satisfies the values and hence should be considered.

3. x≥1, |x|+|x-1|=1 --> x+x-1=1 ---> 2x=2 ---> x= 1 --> this range satisfies the values and hence should be considered. As you are getting a particular value here, you need to check for x>1 in particular as you might not get consistent value.

For checking, consider x=5, |5|+|5-1| = 5+4 = 9 \(\neq\) 1. Thus x>1 is NOT a valid range. Hence the range in question becomes \(0 \leq x \leq 1\)

Alternate solution, |x| and |x-1| can be interpreted as distance of 'x' from 0 and 1 respectively. So in effect, the question is asking you what is the range of variable 'x' for which we get sum of its distances from 0 and 1 equal to 1 unit .

When you draw the number line, you see that this sum of distances of x for 0 and 1 will be = 1 ONLY when \(0 \leq x \leq 1\) .

Both statements when combined give this information and hence C is the correct answer.

Hope this helps.


Thanks for the awesome response! I have another question.
Is there a quick way to decide between X<0, 0≤X≤1, X>1 and X<0, 0≤X<1 ,X≥1 at the start of the question?
Math Forum Moderator
avatar
Joined: 20 Mar 2014
Posts: 2269
GMAT 1: 650 Q49 V30
GMAT 2: 690 Q49 V34
GMAT 3: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 72

Kudos [?]: 871 [0], given: 637

Re: Is |x| + |x -1| = 1? [#permalink] New post 12 Dec 2015, 07:47
srirampasupathi wrote:

Thanks for the awesome response! I have another question.
Is there a quick way to decide between X<0, 0≤X≤1, X>1 and X<0, 0≤X<1 ,X≥1 at the start of the question?


It is dangerous to start generalizing quant concepts without actually looking a the question. The 'convention' is to take x<0, 0≤x≤1, x>1 as this will not make us commit the mistake of bringing x>1 into the picture as you had proposed.

Generally, for absolute value questions, |x-a| should immediately make you realize that you need to look at values less than a, =a and > a.

Hope this helps.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Intern
Intern
avatar
Joined: 04 Aug 2015
Posts: 9
Followers: 1

Kudos [?]: 2 [0], given: 1

Re: Is |x| + |x -1| = 1? [#permalink] New post 12 Dec 2015, 08:03
Engr2012 wrote:
srirampasupathi wrote:

Thanks for the awesome response! I have another question.
Is there a quick way to decide between X<0, 0≤X≤1, X>1 and X<0, 0≤X<1 ,X≥1 at the start of the question?


It is dangerous to start generalizing quant concepts without actually looking a the question. The 'convention' is to take x<0, 0≤x≤1, x>1 as this will not make us commit the mistake of bringing x>1 into the picture as you had proposed.

Generally, for absolute value questions, |x-a| should immediately make you realize that you need to look at values less than a, =a and > a.

Hope this helps.


Thanks a lot! It really helped!
Expert Post
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 684
GPA: 3.82
Followers: 34

Kudos [?]: 260 [0], given: 0

Is |x| + |x -1| = 1? [#permalink] New post 13 Dec 2015, 16:49
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Is |x| + |x -1| = 1?

(1) x ≥ 0
(2) x ≤ 1

In general, when absolute values appear in addition, the answer is between. That is, just like the question above, when |x|+|x-1|=1?, the between is 0<=x<=1, which is yes and therefore sufficient. In 1) & 2), 0<=x<=1 -> yes, which is sufficient. Therefore, the answer is C.

-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 20% off coupon code for GMAT Club members.
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Is |x| + |x -1| = 1?   [#permalink] 13 Dec 2015, 16:49

Go to page   Previous    1   2   [ 38 posts ] 

    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic (|x| - 1)/(x - 1) =? fattty 1 13 Jan 2016, 22:36
6 Experts publish their posts in the topic Is x = 1? Bunuel 5 19 Jun 2015, 00:55
1 Experts publish their posts in the topic Is x = 1? Bunuel 4 06 Feb 2015, 06:21
26 Experts publish their posts in the topic Is x=1? bagdbmba 5 18 Jun 2013, 08:16
8 Experts publish their posts in the topic Is |x| + |x - 1| = 1? rahulms 8 22 Jan 2010, 06:42
Display posts from previous: Sort by

Is |x| + |x -1| = 1?

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.